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Abstract This article presents a novel type of queries in spatial databases, called the
direction-aware bichromatic reverse k nearest neighbor(DBRkNN) queries, which extend
the bichromatic reverse nearest neighbor queries. Given two disjoint sets, P and S, of spa-
tial objects, and a query object g in S, the DBRANN query returns a subset P’ of P such
that k nearest neighbors of each object in P’ include g and each object in P’ has a direc-
tion toward ¢ within a pre-defined distance. We formally define the DBRANN query, and
then propose an efficient algorithm, called DART, for processing the DBRAKNN query. Our
method utilizes a grid-based index to cluster the spatial objects, and the BT -tree to index
the direction angle. We adopt a filter-refinement framework that is widely used in many
algorithms for reverse nearest neighbor queries. In the filtering step, DART eliminates all
the objects that are away from the query object more than a pre-defined distance, or have
an invalid direction angle. In the refinement step, remaining objects are verified whether
the query object is actually one of the k nearest neighbors of them. As a major extension
of DART, we also present an improved algorithm, called DART+, for DBRANN queries.
From extensive experiments with several datasets, we show that DART outperforms an R-
tree-based naive algorithm in both indexing time and query processing time. In addition,
our extension algorithm, DART+, also shows significantly better performance than DART.
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1 Introduction

Recently, with the rapid dissemination of mobile devices and location-based ser-
vices(LBSs), various applications have started utilizing spatial databases for mobile users.
Bichromatic reverse nearest neighbor(BRNN) queries extended from reverse nearest neigh-
bor(RNN) queries are one of the most popular and important queries for spatio-temporal
information, and widely used in many applications. For example, in the case of mobile
advertising, an advertiser can promote a product to specifically targeted customers who are
close to the advertiser based on each customer’s location by searching BRNNs of the adver-
tiser. Many researches addressed that one of the future challenges of location-based services
is personalization (Dhar and Varshney 2011; Mokbel and Levandoski 2009; Krumm 2011),
which provides more customized services, based on the user’s implicit behaviour and
preferences, and explicitly given details. In order to achieve personalization in LBSs, con-
sidering only location is not sufficient to retrieve more accurate results in terms of the user’s
intention.

In that respect, the direction is another important feature that represents user’s intention
as there exist extensive researches that consider the direction to predict moving object’s
future location (Qiao et al. 2010). Each mobile user can have a certain direction with respect
to his/her movement or sight, and the direction can be easily obtained by a mobile device
with GPS and a compass sensor (Qin et al. 2011). However, there are only a few researches
that considers a direction-aware environment, and existing studies only focus on user-centric
query processing, not objective-centric query processing.

Considering the above, BRNN queries without the direction constraints can be ineffective
in many applications to find targeted users in the sense that users looking(or moving) in
the opposite direction are less influenced by the query objects even if they are close to the
query object. For example, there are many customers in a marketplace, and they are moving
around and looking for some products they need. In this situation, a restaurant manager
may want to find potential customers who have an intention to enter the marketplace, and
hang around the restaurant, because the manager wants to reduce the advertisement budget
and does not want to be regarded as a spammer to customers. There are also other kinds of
applications where a direction property needs to be considered such as providing a battle
strategy to a moving military squad during the war. In these applications, the direction as
well as the location are important properties to obtain more accurate results in terms of the
targets’ intention.

Figure 1 shows an example of the BRNN query with a direction constraint. Consider
aset P = {p1, p2, p3, p4, ps, pe} of customers and a set S = {s1, 52, 53, 54} of adver-
tisers. Given a querying advertiser s4, the usual BRNN query returns ps, p3 and p4 since
their closest advertiser is ¢ (i.e., s4). However, the customers whose directions (represented
by arrows) are not toward ¢ do not need to be considered because they are not effective
advertising targets. Thus, although customer p; has g as its nearest advertiser, p, should be
discarded from the final result in the direction-aware environment since the direction of p;
is toward s3, not ¢. Furthermore, in order to maximize the effectiveness of advertising, it is
better to consider the distance. If we adjust a maximum distance on py, it also can be dis-
carded depending on the maximum distance, even if their nearest advertiser is g. Therefore,
only p3 can be an answer for the BRNN query with the direction constraint.

There have been extensive algorithms studied for processing RNN queries (Achtert et al.
2006; Korn and Muthukrishnan 2000; Stanoi et al. 2000; Tao et al. 2004) and BRNN queries
(Lian and Chen 2008; Taniar et al. 2011; Tran et al. 2010; Vlachou et al. 2011), based on
various effective pruning techniques using objects’ locations. However, the straightforward
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Fig. 1 An example of BRNN
query with a direction constraint

adaptation of these algorithms are inefficient to solve the problem of finding BRNNs with
the direction constraint. This is because each object has an arbitrary direction, which does
not have any correlation with its location.

In this paper, we present a novel type of queries, called direction-aware bichromatic
reverse k nearest neighbor queries(tDBRkNN), in spatial databases, which extends the previ-
ous BRNN query by considering the direction as well as the location. Moreover, we propose
an efficient algorithm, called DART, for our DBRANN queries to overcome the difficulties
of pruning in a direction-aware environment. DART attempts to minimize pre-processing
time by using only a grid-based index to access the set of spatially clustered objects and
the BT-tree to index objects’ directions. In common with many previous studies, we fol-
low a filter-refinement framework. In specific, in the filtering step, DART returns a set of
candidates, each of which has ¢ as one of its k£ nearest neighbors and a direction toward g
within a pre-defined distance, while the refinement step removes false hits from the set of
candidates.

As a major extension of DART, this article also propose an improved algorithm, called
DART+, for DBRANN queries to reduce the number of conducting the refinement processes
that must be performed by DART. DART+ attempts to minimize the refinement step to
improve the previous algorithm by using a dynamic filtering with a cropping method. Using
this method, we can significantly prune unnecessary objects in the refinement step.

The contributions of this paper are as follows:

—  We propose a novel type of query, the direction-aware bichromatic reverse k nearest
neighbor (DBRKNN) query, which is an interesting variant of the bichromatic reverse
nearest neighbor query. The DBRANN query is useful in many applications which
require to process a large amount of spatial objects with arbitrary directions.

— We propose an efficient algorithm, namely DART, to process DBRANN queries
specially focusing on a direction-aware pruning technique. To effectively prune unnec-
essary objects, DART uses simple index structures and yet significantly reduces the
pre-processing time.

—  We propose an improved algorithm, namely DART+, to process DBRANN queries
specially focusing on an efficient refinement process by using the dynamic filtering.
To conduct the dynamic filtering, DART+ uses a cropping method and significantly
reduces the query processing time.
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—  We experimentally evaluate the proposed algorithm by using synthetic datasets and real
datasets. Experimental results show that DART is on the average 6.5 times faster for
the indexing time, and 6.4 times faster for the query processing time than an R-tree-
based naive algorithm. Moreover, DART+ is on the average 3 times faster for the query
processing time than DART.

The rest of the paper is organized as follows. Section 2 surveys related work.
Section 3 presents the formal definition of the DBRNN query. The naive algorithm for the
DBRNN query is presented in Section 4, and one of proposed algorithms, called DART,
for the DBRNN query is explained in Section 5. Section 6 explains a major extension of
DART, called DART+, Section 7 experimentally evaluates the proposed algorithms. Finally,
Section 8 concludes the paper with some directions for future work.

2 Related work

We first examine existing studies (Achtert et al. 2006; Benetis et al. 2006; Cheema et al.
2012; Kang et al. 2007; Korn and Muthukrishnan 2000; Korn et al. 2002; Lian and
Chen 2008; Stanoi et al. 2000, 2001; Taniar et al. 2011; Tao et al. 2004, 2006, 2007;
Vlachou et al. 2011) about the RNN query, which has received considerable attention
due to its importance and effectiveness in many applications. The first algorithm for pro-
cessing the RNN query was proposed by Korn and Muthukrishnan (2000). However,
this algorithm requires to index all data points, and to pre-compute their nearest neigh-
bors which is inefficient in dynamic database environments. Stanoi et al. (2000) proposed
“60-degree-pruning”, which maintains only an index tree without any pre-processing struc-
ture. They divide the space around the query point into six equal regions having 60° at
the query point, and the answers are retrieved by selecting a candidate point from each
region. The TPL algorithm was proposed by Tao et al. (2004), which utilizes the per-
pendicular bisector between the query point and each point to maximize the pruning
area.

The above algorithms for RNN queries, however, are inefficient to process the DBRANN
query since they do not consider the direction constraint for the query processing. For exam-
ple, Fig. 2a shows the false hits/false dismisses of the TPL algorithm for the DBRANN
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(a) An example of TPL algorithm (b) An example of Voronoi diagram

Fig. 2 An example of the false hits/false dismisses of the previous works
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query. There is a bisector between the query object ¢ (i.e., s3) and object sy, so p2, p3,
and ps are selected as candidates since they reside in the half-plane containing ¢g. Although
the object p3 and ps are the BRNNs of ¢, these are not the DBRNNSs of g because their
directions are not toward ¢. Moreover, the pruned object p4 that is located in the opposite
half-plane to g can be an answer in the DBRNN query, because its direction is toward g
across the bisector.

The traditional RNN queries have been further branched out into the bichromatic RNN
(BRNN) query, which is the closest to our DBRNN query. Given two disjoint sets, P and S,
of points, and a query point which is one of the points in S, the BRNN query retrieves a set
of points in P that have q as their nearest neighbor. There are some researches (Tran et al.
2010; Kang et al. 2007; Lian and Chen 2008; Stanoi et al. 2001) on the BRNN query, and
all their solutions are basically focusing on finding the Voronoi polygon that contains the
query point by using a Voronoi diagram.

However, the above methods for the BRNN query are not efficient in our environment.
For example, Fig. 2b shows an example of using Voronoi diagram to solve BRNN query.
There are seven Voronoi polygons each of which is generated by an object in S. In the case
of py and pg, they are the BRNN of ¢ (i.e., s7), but the directions of them are toward the
opposite side of ¢, which makes them to be false hits/false dismisses. Similarly, although
pa and pp are not the BRNN of ¢, they are the DBRNN of ¢ because their directions are
toward q.

For other types of RNN queries, there has been many researches for processing the con-
tinuous RNN(CRNN) query and the stream RNN query. The goal of each type of queries is
basically to find the RNN with regard to the query object in a specific environment. How-
ever, the solutions for these queries are neither applicable nor relevant to the DBRANN
query. This is because the solutions for these queries use some techniques such as a bisec-
tor or a partition to construct several safe zones for pruning irrelevant objects, which do not
consider the direction feature, and it is another challenge to modify those solutions to work
also in a direction-aware environment.

By focusing on the influence of obstacles on the visibility of objects, there are
works on a different type of RNN queries (Gao et al. 2009; Wang et al. 2012; Nutanong
et al. 2010). Gao et al. (2009) first introduced the visible reverse nearest neighbor
(VRNN) search, which considers the visibility and the obstacle that significantly affect
the result of RNN queries. However, the visibility is defined only for the query object
to verify objects that are not influenced by the presence of obstacles while the direc-
tion in the DBRNN query is defined for each object to represent its movement or sight.
Furthermore, we also adjust the maximum distance to give a flexibility on the spatial
environment.

Recently, Li et al. (2012) proposed the direction-aware spatial keyword search, called
DESKS, that finds the k nearest neighbors satisfying both keyword and direction constraints
to the query. They assumed that the direction is given and addressed that the existing meth-
ods on the spatial keyword search are inefficient to solve the spatial keyword search with
a direction constraint. However there is a big difference between this work and ours in the
sense that we focus on RkNN queries (not kNN), and every object has a direction in our
environment while only the query object has a direction in DESKS.

Finally, a preliminary version of this article was published in Lee et al. (2013). The
authors proposed the direction-aware bichromatic reverse k nearest neighbor query, called
DBRANN, that finds the reverse k nearest neighbor satisfying the direction constraint to
the query. They defined two types of spatial objects, one has an arbitrary direction and
location information, and the other has only location information. One of the static objects
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becomes the query. In addition, they also presented a naive algorithm and DART that solve
the DBRANN queries.

3 Problem formulation

In this section, we formally define the DBRNN query along with the DBRANN query.
Table 1 summarizes the notations frequently used.

3.1 Problem definition

We consider two disjoint sets, P and S, of spatial objects, and a query object ¢ in S. Each
object in P, called a customer object, includes its location and a direction which is repre-
sented by a counterclockwise angle from the positive x-axis (i.e., the direction of 3 o’clock
is 0°), and has a fan-shaped region, called a valid area, based on its directional angle. On
the other hand, objects in S, called advertiser objects, have only locations, and one of the
advertiser objects can be a query object. Intuitively, the valid area of a customer object can
be seen as an influential area that the object can affect the other type of objects during the
query processing. We now formally define the valid area which is important for selecting
candidates and verifying answers as follows:

Definition 1 (Valid Area) Let p denote an object in P. Then the valid area of p is
represented by a fan-shaped region, which has the following properties:

— A valid area consists of angle 8 and radius r, both of which are pre-defined by a system.
— 6 is aviewing angle, and r is the maximum distance to discard an object the distance
of which is greater than r.

Now, based on Definition 1, we define the DBRNN query as follows:
Definition 2 (Direction-aware Bichromatic Reverse Nearest Neighbor Query) Given two
disjoint sets, P and S, the direction-aware bichromatic reverse nearest neighbor query

retrieves the subset P’ of P such that each object in P’ has ¢ € S as its nearest neighbor,
and contains ¢ in its valid area.

Table 1 The notation of the DBRANN

Symbol Description

P={p1, ..., pu} the set of customer objects with directions
S={s1,..., Sm} the set of advertiser objects

P a customer object with a direction in P

s an advertiser object in §

q the query object selected from advertiser objects in S
r the maximum distance

d the directional angle (0° ~ 359°)
0

the valid angle range
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Figure 3a illustrates the basic concept of the DBRNN query. The object p; has a valid
area based on the maximum distance r, the directional angle d and the valid angle range 6.
If the query is invoked on s2, p1 is the DBRNN of s, even though s is closer than s; since
only s> is located within the valid area of p;. Similar to Definition 2, the DBRAKNN query
can be defined as follows:

Definition 3 (Direction-aware Bichromatic Reverse k Nearest Neighbor Query) Given two
disjoint sets, P and S, the direction-aware bichromatic reverse k nearest neighbor query
retrieves the subset P’ of such P that each object in P’ has ¢ € S as one of its k nearest
neighbors, and contains ¢ in its valid area.

Figure 3b shows an illustration of the DBRANN query. Let us assume that & is 2, and the
query is invoked on sy4. If the value of & is 1, there is no answer for the query. However, in
this case, although s5 is the nearest neighbor of p3 as well as a DBRANN of g, because ¢ is
the second-nearest neighbor of ps.

3.1.1 Problem statement

In this paper, our goal is to find an efficient method that gives the set of exact answers for
the DBRNN query and the DBRANN query. Specifically, we focus on minimizing both the
indexing time and the query time.

4 The naive algorithm

In this section, we present a naive algorithm that solves DBRNN queries. First, we overview
the algorithm, and then explain the details of the algorithm.

4.1 Overview

The naive algorithm is based on an R-tree index structure to access the spatial objects with
its specific location information. Moreover, we adopt a filter-refinement framework to fol-
low procedures of ordinary RNN query processing algorithms. In the filtering step, the

(a) An illustration of the DBRNN query  (b) An illustration of the DBRENN query
(k=2)

Fig. 3 An illustration of the DBRNN query and the DBRANN query
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algorithm excludes all the objects that are more than the maximum distance away from the
query object. In addition, the algorithm also checks the directional angle to make sure the
remaining objects guarantee a proper distance as well as a proper directional angle. In the
refinement step, the remaining objects are verified to check whether the query object is con-
sidered as the nearest neighbor of each object. The important feature of the naive algorithm
is explained as follows:

Algorithm 1 The filtering step of the naive algorithm

Input: The query object ¢

Output: A set of candidates

candidate < 0;

UserTree + getUserTree();

list[]<— UserTree.rangeSearch(g, 7);

for j < 0 to size of list[ ] do
angle < getAngle(q, list[j]);
if |(angle — list[j].d)| < g then

| candidate.add(list[j]);

end

end

return candidate

© 0N O s WwN K

[
(=}

4.1.1 Spatial object indexing using an R-tree

Every spatial objects in a set P are indexed by an R-tree structure (Guttman 1984). The
algorithm maintains the spatial object’s specific location information to prune unnecessary
objects that are out of the maximum distance. Using this index structure, the algorithm can
achieve almost exact distance pruning with a range search.

4.2 A naive algorithm for DBRNN query processing

Based on the above key feature, the naive algorithm follows a filter-refinement framework to
retrieve the exact answer. The algorithm indexes the specific location of the objects, but does
not consider the directional angle. Therefore, although it does not maintain the directional
angle of the objects, its one of advantages is conducting a nearly optimal distance pruning
with an R-tree indexing structure.

4.2.1 Index construction step

In the index construction step, the algorithm inserts objects’ coordinates into an R-tree. In
this process, the algorithm inserts only objects in P, because all of objects in S need to be
utilized in the refinement step to verify that a candidate object considers the query objects
as its nearest neighbor or not.

4.2.2 Filtering step

In the filtering step, the naive algorithm eliminates unnecessary objects by considering the

maximum distance based on the location of the object. The overall filtering process is shown
in Algorithm 1.
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Algorithm 2 The refinement step of the naive algorithm

Input: A candidate set C'
Output: a set of answers Answer
1 list +—getObjectS();

2 Answer < C;

3 for i + 0 to size of C do

a distance < getDistance(g, C[i]);

5 for j <+ 0 to size of list[] do

6 if distance > getDistance(C[i], list[j]) then
7 angleS < getAngle(C[i], list[j]);

8 if |(angleS — Cli].d)| < g then

9 Answer.remove (C[i]);

10 break;

11 end

12 end

13 end

14 end

15 return Answer

First, the algorithm gets the user’s location information from the R-tree structure. Using
this structure, we can easily get nearest objects within the maximum distance by conducting
arange search (Line 2-3). As shown in Fig. 4, the algorithm can effectively prune unneces-
sary objects with a nearly optimal distance range search. By doing this, we can ignore a lot
of objects whose distance from the query object is larger than the maximum distance, and
the pruning result is almost optimal.

Next, for each remaining object, the algorithm double checks the angle degree between
the query object and the object (Line 6-8). The reason for doing this step is to make sure that
the candidate set contains only objects whose valid area covers the query object. Therefore,
if the difference of the two directional angles is less than g, then we finally add the object
to the candidate set.

Fig. 4 A range query of the N
native algorithm

Pe

Ps
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4.2.3 Refinement step

After the process of the filtering step, we obtain a candidate set that includes all the objects
whose valid area contains the query object. In this step, we examine that the actual nearest
neighbor of each candidate object is the query object. Algorithm 2 shows the flow of the
refinement step. Basically, the method confirms the answer set by checking the nearest
neighbor of each candidate. For a candidate object p, if there is an advertiser object s;
closer than the query object, it is possible that s; is the nearest neighbor of p and is within
the valid area of p. To determine this, for all the advertiser objects, the method calculates
the distance between the candidate object and each advertiser object (Line 4). Moreover, if
there is an advertiser object closer than the query object, we check the actual angle degree
(Lines 7-12). Similar to the above procedure, if the difference is smaller than a half of 6, it
means that the directional angle is also facing the object s;, and the nearest neighbor of the
candidate object is not the query object (Lines 8-11). Otherwise, the candidate object can
be an answer of the DBRNN query.

4.3 A naive algorithm for DBRANN query processing

In this section, we extend the algorithm for DBRNN queries to process DBRANN queries
for an arbitrary value k, which means the query result should be all the customer objects
that have g within k nearest neighbors (k is a positive integer, typically small). For process-
ing DBRANN queries, although the arbitrary value k is added, the overall flow is almost
the same. The filtering step does not need to be changed, because we prune unnecessary
objects only considering the distance and angle constraints. In the refinement step, the naive
algorithm should be slightly modified so that k advertiser objects can be checked when find-
ing advertiser objects closer than the query object (Lines 9-10 in Algorithm 2). In the for
loop (Lines 5-13), we skip the removal process (Line 9) until the number of proper objects
reaches k — 1, and once the number equals to k, then remove the candidate object.

5 The DART algorithm

In this section, we present DART that solves DBRNN queries. First, we overview the
method, and then explain the details of DART.

5.1 Overview

Essentially, our solution is based on a grid-based index to access the spatially clustered
objects and the B*-tree to index the direction’s angles. We adopt a filter-refinement frame-
work that is widely used in many algorithms for RNN queries. In the filtering step, DART
eliminates all the objects that are more than the maximum distance away from the query
object or have an invalid direction’s angle. After that, in the refinement step, the remaining
objects are verified to check whether the query object is actually the nearest neighbor of
each object. The important features of DART are explained as follows:

5.1.1 The grid-based space partitioning

The whole space is divided into a grid of the equal-sized cells that are represented by rectan-
gles of r x r size (recall that r is the maximum distance). The number of rows and columns
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depends on the width and height of the space. Each cell has a unique id number that rep-
resents its location. Figure 5a shows an example of our space partitioning scheme using
grid cells. For each cell, we not only maintain two lists of objects (advertiser object and
customer object) that are located in the area of the cell but also index the direction’s angle
of each customer object by using the BT-tree. Note that this space partitioning takes just
linear time while an R-tree takes at least O (nlogn) time complexity for indexing n spatial
objects(Guttman 1984).

5.1.2 Direction angle index

The directions’ angles are indexed by the BT-tree to reduce unnecessary checks for the
objects that are toward the wrong direction. In this structure, there are at most 360 keys
which represent degrees of the directions’ angles. For each key, we maintain a list of the
objects that have the same direction angle degree as the key value. Similar to the grid-based
space partitioning, the construction of this B¥-tree can be done in linear time, since each
insertion requires only O (log360) time (i.e., a constant time).

5.1.3 Valid direction angle range

Each grid cell has a static valid direction angle range (hereafter called “valid angle range”)
that guarantees, if the direction angle of an object is not within the valid angle range, the
object cannot have an appropriate direction toward the query object. Figure 5b shows an
example of the valid angle range. When the query is posed, we first figure out which grid
cell contains the query object, and then retrieve neighboring cells around the grid cell that
has the query object. For each neighboring cell, we define the valid angle range accordingly.
As we discussed in Section 3, we use counterclockwise angles; the 3 o’clock position is 0°
and the 6 o’clock position is 270°.

Let us first consider the valid angle range of cell (i — 1, j — 1). In an extreme case,
an object in P in cell (i — 1, j — 1) can be located at the bottom right corner of the cell
and the query object can be located at the top right corner or the bottom left corner of
cell (i, j). In this case, the valid angle range of an object in P should cover the top or left

r : 0,00, 1)[(0 2 (0 3)[(04](©5)

L(—-1,j+1)

LO|@LD|@|@w3|a4s|as (i-1j-1) p :

RoOl2D[(22]23)|R24([25

s Valid Angle Direction
— Height 2 Degree
[ERVR KEMNR REAPN NEAEIN NERDN NERS) (@"1) ] @5 Gj+1

404142434445 =

Go|6D[62]63|649]65 (+1j-D | @+L) [G+1j+1D

(a) An example of the grid-based space  (b) An example of the Valid Direction
partitioning Angle Degree

Fig. 5 The key elements for DART
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boundary of cell (i, j) to have the query object within its valid area. Therefore, the valid
angle range of cell (i — 1, j — 1) should be (0°, go) and (270° — go, 360°] as depicted in
Fig. 5. The valid angle range of other three corner cells (i.e., i — 1, j + 1), + 1, j — 1),
and (i + 1, j + 1)) are defined in a similar way. On the other hand, the cells on the cross
line (i.e., (i — 1, j), (i, j— 1), j+ 1), + 1, j)) are defined in a different manner due
to the positional characteristics. For example, in an extreme case of an object in P in cell
(i — 1, j) can be located at the bottom left or bottom right corner of the cell and the query
object can be located at the opposite side of the object in the cell (i, j). In this case, the valid
angle range of an object in P should cover the top boundary of cell (i, j) to have the query
object within its valid area. Therefore, the valid angle range of cell (i — 1, j) should
be (0°, go) and (180° — go, 360°]. Similar to the corner cells, the other cells on the
cross line have similar valid angle ranges. The specific ranges of the valid angle ranges are
shown in Table 2.

5.2 DART for DBRNN query processing

Based on the above key features, DART follows a two-step framework, where a set of
candidate objects are returned and then false hits are verified to retrieve the exact solu-
tion. Our algorithm does not index the exact locations of the objects, but use a grid-based
structure to access the set of spatially clustered objects efficiently. Moreover, our method
inserts the object’s direction’s angle degree into the BY-tree to maintain the object’s
direction’s angle.

5.2.1 Index construction step

Algorithm 3 shows the process of constructing the basic structures. When an object is
inserted, the assignment algorithm determines which grid cell contains the object (Line 4).
In addition, the method just adds the object into the proper list and stores the list for the cor-
responding cell (Lines 5-7). For the two types of objects, we maintain two lists of objects
separately. In addition, DART also maintains a BT -tree to index direction’s angle degree for
each cell (Lines 9-11). As mentioned earlier, the entire construction process can performed
in linear time.

Table 2 The Valid Angle Range of each cell

Cell No. Valid Angle Degree

i—1,j—1 (0°, 9°) and (270° — §°,360°]
-1, (0°, °) and (180° — §°,360°]
(i—1,j+1) (180° — §°,270° + °)

G,j-1 (0°,90° + §°) and (270° — §°, 360°]
G, ) (0°,360°]

G, j+1) 90° — §°,270° + §°)

i+1,j-1) (0°,90° + §°) and (180° — §°, 360°]
G+1,7 (0°,180° + §°) and (360° — §°, 360°]
(i+1,j+1D (90° — §°,180° + 57
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5.2.2 Filtering step

In the filtering step, DART eliminates unnecessary objects by considering the maximum
distance and the valid angle range based on the location and angle of the object. The overall
algorithm flow is shown in Algorithm 4.

Algorithm 3 The construction of the basic structure

Input: Sets of objects P and S
Output: A set G of grid cell’s list and the BT-tree

1 G+ 0

2 foreach obj in PU S do

3 obj < objectli];

4 cellld < Assign(obj.x, obj.y) ;

5 list « lists[cellld].;

6 list.add (obj);

7 Gl.add (list);

8 if obj € P then

9 d <+ obj.d;
10 Btree < Btrees|cellld];
11 Btree.insert(d, obj);
12 end
13 end

14 return G;

First, the method gets the grid cell number that contains the query object by using assign
function. In this function, it is easy to retrieve the neighboring cells by using the width
and height of the space (Lines 2-3). Because the size of each cell is determined by the
maximum distance, we do not have to consider other cells except for the neighboring cells.
By doing this, we can prune numerous objects whose distances from the query object are
larger than the maximum distance.

Next, for each cell, DART selects the candidate set by processing the range search on
the B*-trees on directions’ angles of objects located in the cell (Lines 5-7). Note that this
range search requires only a constant time since there are at most 360 keys. As we dis-
cussed the valid angle range in Section 4.1, we can easily find the objects whose directions’
angles are within the valid angle ranges of the corresponding cells (see Table 2). Before we
put an object into the candidate set, we double check the actual distance and the
angle degree between the query object and the object (Lines 8-13). The reason for doing
this step is to guarantee that the candidate set contains only objects whose valid area
cover the query object. If the distance between the two objects is within the maximum
distance and the difference of the two directions’ angles (angle degree between two objects
and the object’s direction angle degree) is less than g, then we finally add the object to the
candidate set.

5.2.3 Refinement step

After the termination of the filtering step, we have a candidate set that contains all the
objects whose valid area contain the query object. In the refinement step, we verify that
the actual nearest neighbor of each candidate object is the query object. Algorithm 5 shows
the flow of the refinement step. Basically, the method confirms the answer set by check-
ing the nearest neighbor of each candidate. For candidate object p, if there is an advertiser
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Algorithm 4 The filtering step of DART

Input: The query object ¢
Output: A set of candidates
candidate + 0;
Cellld < Assign(query.x, query.y);
neighbor| | +—getNeighbor (Cellld);
for i < 0 to size of neighbor| | do
Btree + neighbor|i]. Biree;
range < neighbor[i].ValidAngle Range;
list]] + Btree.rangequery(range);
for j < 0 to size of list[ ] do
angle < getAngle(q, list[j]);
10 if getDistance(list[j],q) <r AND |(angle — list[j].d)| < g then
11 | candidate.add(list[j]);
12 end
13 end
14 end
15 return candidate

© 0N O AW

object s; closer than the query object, it is possible that s; is the nearest neighbor of p
and is within the valid area of p. To determine this, for all the advertiser objects in S that
are contained in neighboring cells, the method calculates the distance between the candi-
date object and each advertiser object (Line 6). Moreover, if there is an advertiser object
closer than the query object, we check the actual angle degree (Lines 6-12). Similar to
the above procedure, if the difference is smaller than half of 6, it means that the direc-
tion’s angle is also facing the object s;, and the nearest neighbor of the candidate object
is not the query object (Lines 8-11). Otherwise, the candidate object can be an answer
of the DBRNN query.

5.3 DART for the DBRANN query processing

In this section, we extend the algorithm for DBRNN queries to process DBRANN
queries for an arbitrary value k, which means the query result should be all the

Algorithm 5 The refinement step of DART for the DBRNN query

Input: A candidate set C'
Output: a set of answers Answer

1 list +getObjectS();
2 Answer < C
3 for i < 0 to size of C do
4 distance < getDistance(q, C[i]);
5 for j < 0 to size of list[] do
6 if distance > getDistance(C[i], list[j]) then
7 angleS < getAngle(C[i], list[j]);
8 if |(angleS — Clil.d)| < & then
9 Answer.remove (C[i]);
10 break;
11 end
12 end
13 end
14 end

return Answer

[
[
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customer objects that have g within k& nearest neighbors (k is a positive integer,
typically small). For processing DBRANN queries, although the arbitrary value k is
added, the overall flow is almost the same. The filtering step does not need to be
changed, because we prune the unnecessary objects only considering the distance and
angle constraints. In the refinement step, DART should be slightly modified so that
k advertiser objects can be checked when finding advertiser objects closer than the
query object (Lines 9-10 in Algorithm 5) in a way similar to the naive algorithm as
explained in Section 4.3.

6 The DART+ Algorithm

In this section, we present our proposed algorithm, called DART+, that improves DART to
solve DBRNN queries more efficiently. First, we overview our proposed method, and then
explain the details of DART+ (Fig. 6).

6.1 Overview

Although DART effectively prunes unnecessary objects using the grid-based space parti-
tioning, the directional angle index, and valid direction angle range, this algorithm does not
handle objects in S. In other words, the refinement step is similar to that of the naive algo-
rithm so that there is a possibility of improving the algorithm. Therefore, DART+ focuses
on the refinement step to minimize the trials of the refinement process using a dynamic fil-
tering for the objects in the set S, while the index construction step and the filtering step are
the same as those of DART. The important features of DART+ are explained as follows:

6.1.1 A cropping method

As we mentioned earlier, the objective of DART+ is to improve the refinement step of
DART. To achieve this, we conduct a dynamic filtering on the objects in § for each candidate
object in P. Basic observation is that we can get the grid cells that overlap the valid area
of a candidate object. This can be done by finding the minimum bounding rectangle(MBR)
with representative points of the valid area. These representative points can be obtained by
using the polar coordinate system, and the details will be explained in Section 6.1.2. Thus,
we can get grid cells intersecting with the MBR. Figure 7a shows the first step of a cropping
method. By considering the grid cells, we can discard unnecessary objects in other grid
cells which do not affect the candidate object. To enhance the accuracy and efficiency of the
dynamic filtering, we verify whether the object is within the MBR or not for the remaining

Fig. 6 Three points to conduct Left corner of p;
the dynamic filtering [}

“.._Center point of the circular arc
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(@) The first step of the cropping method (b) The second step of the cropping
method

Fig. 7 An example of the cropping method

objects. If the object is within the MBR, it has the possibility of being the nearest neighbor
of the candidate object.

6.1.2 The polar coordinate system

The most important task in the cropping method is determining corner points of each can-
didate object’s valid area. To achieve this task, DART+ utilizes the polar coordinate system.
The polar coordinate system is a two-dimensional coordinate system that can be obtained
by the distance from the fixed point and an angle from a fixed direction. Figure 8a shows
an example of the polar coordinate system. In DART+, each candidate object’s position is a
fixed point, called the pole, and the object’s directional angle is 6.

However, we can not adapt this coordinate system directly, because we need to know the
cartesian coordinates which have x and y values. Figure 8b shows a diagram illustrating the
relationship between the polar and the cartesian coordinates. Based on these mathematical
characteristics, we can easily get the exact edge points of the valid area.

(3,60°)

(x,5)

r sinf

(4,210°) r cosf X
(a) An example of the polar coordinate (b) A diagram illustrating the relation-
system ship between polar and Cartesian coordi-

nates

Fig. 8 Key concepts of the polar coordinate system
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6.2 The DART+ Algorithm for DBRNN query processing

Based on the above key features, DART+ also follows a filter-refinement framework.
DART+ utilizes the same index construction and the filtering method as DART. The
improvement is applied to the refinement step, and the key features are implemented in the
revised refinement step.

Algorithm 6 The refinement step of DART+ for the DBRNN query

Input: A candidate set C
Output: a set of answers Answer

1 Answer < C
2 for i < 0 to size of C do
3 obj < CIil;
4 obj.polar <—getPolarCoordinate (obj);
5 maz.x <max(polar.z(]);
6 maz.y <max(polar.y[]);
7 min.z <min(polar.z(]);
8 min.y <min(polar.y[]);
9 list «<—cropping(max.x, maz.y, min.x, min.y);
10 distance < getDistance(q, C[i]);
11 for j < 0 to size of list[] do
12 if distance > getDistance(C[i], list[j]) then
13 angleS < getAngle(C[i], list[j]);
14 if |(angleS — C[i].d)| < % then
15 Answer.remove (C[i]);
16 break;
17 end
18 end
19 end
20 end

21 return Answer

6.2.1 Refinement step revisited

Similar to DART, as a result of the filtering step, we have a candidate set that contains all
the objects whose valid area contains the query object. In the refinement step, DART+ ver-
ifies whether the actual nearest neighbor of each candidate object is the query object more
efficiently than DART. Algorithm 6 shows the flow of the refinement step. The same as
the refinement step of DART, the method confirms the answer set by checking the nearest
neighbor of each candidate. For each candidate object p, if there exists an advertiser object
s; closer than the query object, it is possible that s; is the nearest neighbor of p, depending

Table 3 The cardinalities of real

datasets Dataset Cardinality
UX 19,499
NE 123,593
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Table 4 The values of

parameters Parameter The range of values
Valid angle range 30 - 90 degree
(60 degree by default)
Maximum distance 50 - 200
(100 by default)
Cardinality of P 10,000 - 10,000,000

(1,000,000 by default)

on whether s; is in the valid area of p. To efficiently check this, we propose the crop-
ping method that significantly reduces the search space by dynamically filtering the objects
inS.

The refinement step iteratively conducts the cropping method for each candidate object.
In each iteration, the method tries to get polar coordinates of three points correspond-
ing to the candidate object which are two corner points of the valid area and the center
point of the circular arc (Line 5). As we discussed in Section 6.1.2, the two-dimensional
coordinates can be easily obtained from the polar coordinates by using the trigonometric
functions sine and cosine. With obtained polar coordinates, we find the maximum value
and the minimum value for x coordinate and y coordinate to conduct the cropping method
(Lines 6-9).

After we get the maximum value and the minimum value for x coordinate and y coor-
dinate from the above procedure, we conduct the cropping method to find a minimum
bounding rectangle(MBR) that covers the valid area of the candidate object in P. In this
method, we find some grid cells which intersect with the MBR using the assign function
which is used in the filtering step. With obtained grid cells, we can retrieve objects that are
contained in the grid cells. For the retrieved objects, we verify whether an object is con-
tained in the MBR or not. If an object is within the MBR, then add the object into a list.
As a result, we can get a minimized set of objects that can affect to the candidate object
during the refinement step. This part is the biggest advantage of DART+, and improves the
refinement step of DART.

Based on the above cropping method, we conduct the refinement procedure to verify the
actual nearest neighbor of the candidate object. For all the candidate object, the method
calculates the distance between the candidate object and each remaining advertiser object
(Line 12). Moreover, if there is an advertiser object closer than the query object, we check
the actual angle degree (Lines 14-17). If the difference is smaller than a half of 6, it means
that the directional angle is also facing the object s;, and the nearest neighbor of the candi-
date object is not the query object (Lines 14-17). Otherwise, the candidate object can be an
answer of the DBRNN query.

6.3 The DART+ Algorithm for DBRANN query processing

In this section, we extend the algorithm for DBRNN queries to process DBRANN queries
for an arbitrary value k. Similar to DART, although an arbitrary value k is added, the overall
process is almost the same. In the refinement step, DART+ should be slightly changed so
that k£ advertiser objects can be checked when finding advertiser objects closer than the
query object (Lines 9-10 in Algorithm 6).
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Fig. 9 Experimental results of DBRNN query for varying valid angle range on synthetic datasets

7 Experiments

In this section, we evaluate the performance of our proposed algorithms for the DBRNN
query and the DBRANN query by using synthetic datasets and real datasets. In particular,
we generate synthetic datasets for both spatial object sets, P and S, under the uniform
distribution. We set the size of the dataset for spatial objects in P to be from 10,000 to
10,000,000 and that in S to be | P|/100 on the 2-dimensional 10,000 x 10,000 euclidean
space. Moreover, we also use two real datasets, North East(NE) dataset and United States of
America and Mexico (UX) dataset, provided by Chorochronos!. The cardinalities of datasets
are shown in Table 3. For the real datasets, we consider the objects as advertiser objects, and
we add synthetic data for P, because there is no real dataset for the user location with the
user’s specific heading direction. Moreover, we also normalize the coordinates of the real
datasets on the 2-dimensional 1,000,000 x 1,000,000 euclidean space. For experimental
parameters, we vary the valid angle range, the maximum distance, and the cardinality of the
dataset. The values of parameters are presented in Table 4.

Thttp://www.chorochronos.org/
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Fig. 10 Experimental results of DBRNN query for varying maximum distance on synthetic datasets

The experiment investigates the index time and query time for varying values of parame-
ters such as the valid angle range, the maximum distance, and the cardinality. All algorithms
are implemented in Java, and the experiments are conducted on a PC equipped with Intel
Core i7 CPU 3.4GHz and 16GB memory.

7.1 Experimental results of DBRNN query
7.1.1 Synthetic datasets

Figures 9, 10, and 11 show the performance of proposed algorithms when processing
DBRNN queries with varying values of experimental parameters on the synthetic datasets.
Figures 9a, 10a, and 11a represent the index time of each experiment, and Figs. 9b, 10b, and
11b represent the query time. For all results on the index and query processing, DART shows
a superior performance compared to the naive method. Moreover, DART+ also outperforms
DART.

First, we conduct an experiment with varying the valid angle range varying from 30
degree to 90 degree. According to Fig. 9a, the grid-based clustering and the B*-tree index-
ing on the direction’s angles do not need heavy indexing time while the R-tree based
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Fig. 11 Experimental results of DBRNN query for varying cardinality on synthetic datasets

indexing is time consuming. We can observe that the grid-based clustering takes less time
than the R-tree to maintain the object’s location. Moreover, the direction angle indexing
time is not a big issue in the whole pre-processing step because we have at most 360 angle
degrees so that there are at most 360 keys as we mentioned earlier. On the other hand,
Fig. 9b shows an increasing gap among the query time of the proposed algorithms. The
reason that the naive method shows an increasing curve as the valid angle range increases
is due to the total candidates of answer objects. For instance, DART and DART+ filter
irrelevant objects with its valid angle range, and then conduct refinement on a candidate
set. However, the naive method just filters objects which have a longer distance than the
maximum distance by conducting range search on the R-tree, and checks for the direc-
tion’s angle for each object. In this step, the naive method generates more candidates as
the valid angle range gets wider, and hence the number of total candidates increases. In
the case of DART+, with the dynamic filtering on the objects in S, DART+ can effi-
ciently remove the objects which do not affect to the candidate objects in P. Therefore,
its query time shows an excellent performance because of the further improvement on the
refinement step of DART.

According to Fig. 10a, indexing time is almost similar to the result of the valid
angle range, and Fig. 10b indicates that the query processing time shows a steady gap
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Fig. 12 Experimental results of index time for varying valid angle range on real datasets

among the proposed algorithms. There is a little increasing line for DART for the maxi-
mum distance from 50 to 100, because the number of total candidates is quite small for
the dataset.

In Fig. 11a and 11b, we conduct experiments with varying the cardinality by using all
the datasets. Both index time and query time show similar increasing curves as the cardi-
nality becomes bigger, however, the difference of the performance is upto 10 times among
the proposed algorithms. In our observation, DART and DART+ can handle bigger sized
datasets more efficiently than the naive method, even though the dataset reaches 10 millions
of objects.

7.1.2 Real datasets
We also conduct further experiments with real datasets. Figures 12, 13, and 14 show the
performance of proposed algorithms when processing DBRNN queries with varying values

of experimental parameters on the real datasets. Figures 12a, b, 13a, b, 14a, and b rep-
resent the index time of each experiment. For all results on the index processing, DART
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Fig. 13 Experimental results of index time for varying maximum distance on real datasets

shows a superior performance compared to the naive method, and DART+ also outperforms
DART.

For the query processing time, Figs. 15, 16, and 17 show the performance of proposed
algorithms when processing DBRNN queries with varying values of experimental param-
eters on the real datasets. Figures 15a, b, 16a, b, and 17a, b represent the query time
of each experiment. For all results on the query processing, DART+ shows an excellent
performance.

All results are quite similar to those of the experiments on the synthetic dataset, but
there are some differences on the query processing time. In our observation, the main factor
of the query processing time is the object density. In the case of the synthetic datasets,
the object density is uniformly distributed while the density is not uniformly distributed
in the real datasets. In addition, as shown in Table 3, the cardinality of the real dataset
is fixed whereas the cardinalities of the synthetic datasets are various depending on the
cardinality of P. For these reasons, the result graphs do not show steady lines for the query
processing time.
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Fig. 14 Experimental results of index time for varying cardinality on real datasets

7.2 Experimental results of DBRANN query
7.2.1 Synthetic datasets

Figure 18 shows the performance of the proposed algorithms for the DBRANN queries on
the synthetic datasets. For the arbitrary k value, we start from k& = 2 and exponentially
increase k until 16. The experimental results show that the query times for the cases are
almost uniformly distributed. In our observation, this is due to the maximum distance and
the direction constraint. Only a small computation is increased because the constraints limit
the boundary for the DBRANN search. From this result, we can claim that our proposed
algorithms are also much more efficient for processing the DBRANN query than the naive
method.

7.2.2 Real datasets

Moreover, we also conduct further experiments on the real datasets. Figure 19 shows the
performance of the proposed algorithms for the DBRANN queries on the real datasets. Simi-
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Fig. 15 Experimental results of DBRNN query time for varying valid angle range on real datasets

lar to the above experiments, the experimental results show that the query times for the cases
are almost uniformly distributed. Moreover, DART+ shows the fastest query time among
the proposed algorithms.

7.3 Summary

In summary, we have shown through extensive experiments that DART outperforms the
naive method in both indexing time and query processing time. We conducted several
experiments by changing the values of parameters, namely the valid angle area, the
maximum distance, and the cardinality to show the effect of those parameters on the
performances. The results indicate that DART can handle more than 10 million objects
within a minute. Therefore, DART is suitable for a snapshot query with at most one
minute time interval to secure index time and query time. In addition, although DART
approximately prunes irrelevant objects by using a grid-based space partitioning(while the
naive method prunes certain objects whose distance are longer than the maximum dis-
tance), its direction angle pruning technique makes up the time of double checking for the
maximum distance.
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Fig. 16 Experimental results of DBRNN query time for varying maximum distance on real datasets

Furthermore, we also have shown that DART+ outperforms DART in both indexing time
and query processing time. We conducted several experiments the same as the above, and
the results show that DART+ significantly improves the refinement process of DART. How-
ever, we found that the object density can affect to the performance of the query processing
by observing the experimental results on real datasets. In the case of high density datasets,
the performance of DART+ decreases and the gap between DART and DART+ is getting
narrow. In our observation, if the objects in S are densely located around the query object
and the candidate objects, the cropping method prunes only a small amount of objects.
Therefore, the performance of DART+ can be worse than the situation with sparse distribu-
tion of the objects. However, as shown in the experiments as the real datasets, the objects
appears to be sparse in the real situation.

8 Conclusion
In this work, we presented a novel type of the RNN query that has a direction con-

straint, and proposed an efficient query processing algorithm called DART. Our algo-
rithm utilizes the grid-based object clustering and the direction angle indexing with the
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Fig. 17 Experimental results of DBRNN query time for varying cardinality on real datasets

Bt-tree to improve both index time and query time. We also experimentally showed
that DART outperforms the naive algorithm that utilizes the R-tree based range query
pruning.
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Fig. 18 Experimental results of DBRANN query on synthetic datasets
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Fig. 19 Experimental results of DBRAKNN query on real datasets

By further extending DART, we propose a more improved version of DART, called
DART+, which significantly improves the refinement step of DART by using a dynamic fil-
tering with a cropping method. From extensive experiments, we showed that DART+ also
outperforms DART by improving the refinement process.
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