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Split-and-Bridge: Adaptive Class Incremental Learning within a Single Neural Network

Standard KD-based Class Incremental Learning

¢ Class incremental learning
Learning tasks arrive in a sequence and deep neural network 6
must continually learn to increment already acquired knowledge.
e Rehearsal method
Store a subset of previous samples M,, and train them together with
samples of a new task D, to prevent forgetting previous knowledge.
e Knowledge Distillation based method
Try to mitigate forgetting by transferring the previous knowledge
distilled from the pre-trained model.
e Standard KD-based Method loss function
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Motivation

® Our observation: we can think of class incremental learning as the
problem of learning 3 types of knowledge.

Intra-old / Intra-new / Cross-task
e We can further identify which part of the loss function is utilized
to acquire each type of knowledge in Standard KD-based method.
- Intra-old knowledge: L£;.;(D; UM, 0;) + L..(M,;.0,)
- Intra-new knowledge: L...(D;. ©,)
- Cross-task knowledge: L...(D; U M,;,0,)
e KD-based method suffer from learning intra-new and cross-task
knowledge by CE loss
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Overview

e We propose a two phase learning method within a single network to
learn without any competition between losses
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Proposed Adaptable Incremental Learning

® Separated learning within a single network
To learn the intra-new knowledge as independently as possible
from the task of preserving the intra-old knowledge.

Separated partition: old partition

G)i - (9'3* {003 971,}>t

New partition

Loss function:
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Localized Cross Entropy:
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e Weight sparsification across tasks

We gradually remove inter-connected weights W, ,, and W, , to get
a separated network with less previous knowledge loss.
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e Bridge phase

We re-connect two partitions 6, and 6,, in order to
learn the cross-task knowledge between them.

Re-connect separated partitions:
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Experimental Results

® CIFAR-100 in ResNet-18
consistently achieves the highest accuracy
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* Tiny- ImageNet in ResNet-18 (highest accuracy)
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e Average intra-new and intra-old accuracy
highest intra-new accuracy & preserving intra-old accuracy
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