

Split-and-Bridge: Adaptive Class Incremental Learning within a Single Neural Network

Jong-Yeong Kim, Dong-Wan Choi

Department of Computer Science and Engineering, Inha University, South Korea kjy93217@naver.com, dchoi@inha.ac.kr

https://github.com/bigdata-inha/Split-and-Bridge

Standard KD-based Class Incremental Learning

• Class incremental learning Learning tasks arrive in a sequence and deep neural network θ must continually learn to increment already acquired knowledge.

Rehearsal method

Store a subset of previous samples M_t , and train them together with samples of a new task D_t to prevent forgetting previous knowledge.

Knowledge Distillation based method

Try to mitigate forgetting by transferring the previous knowledge distilled from the pre-trained model.

Standard KD-based Method loss function

$$\lambda \mathcal{L}_{kd}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t) + (1 - \lambda) \mathcal{L}_{ce}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t)$$

$$\mathcal{L}_{kd}(\mathcal{D},\Theta) = -\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \frac{\bar{q}(\mathbf{x})\log q(\mathbf{x})}{\bar{q}(\mathbf{x})\log position} \quad \mathcal{L}_{ce}(\mathcal{D},\Theta) = -\sum_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \mathbf{y}\log p(\mathbf{x})$$

Motivation

• Our observation: we can think of class incremental learning as the problem of learning 3 types of knowledge.

- We can further identify which part of the loss function is utilized to acquire each type of knowledge in Standard KD-based method.
 - Intra-old knowledge: $\mathcal{L}_{kd}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t) + \mathcal{L}_{ce}(\mathcal{M}_t, \Theta_t)$
 - Intra-new knowledge: $\mathcal{L}_{ce}(\mathcal{D}_t, \Theta_t)$
 - Cross-task knowledge: $\mathcal{L}_{ce}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t)$
- KD-based method suffer from learning intra-new and cross-task knowledge by CE loss

Overview

 We propose a two phase learning method within a single network to learn without any competition between losses

Proposed Adaptable Incremental Learning

Separated learning within a single network

To learn the intra-new knowledge as independently as possible from the task of preserving the intra-old knowledge.

Separated partition: Old partition

$$\Theta_t \longrightarrow \langle \theta_s, [\overline{\theta_o}, \underline{\theta_n}] \rangle_t$$

Loss function:

 $\mathcal{L}_{kd}(\mathcal{D}_t \cup \mathcal{M}_t, \langle \theta_s, \theta_o \rangle_t) + \mathcal{L}_{lce}(\mathcal{D}_t, \langle \theta_s, \theta_n \rangle_t)$

Localized Cross Entropy:

$$\mathcal{L}_{lce}(\mathcal{D}_t, \Theta) = -\sum_{(\mathbf{x}, \mathbf{y}) \in \mathcal{D}_t \text{ Local Softmax probability}} \mathbf{y_t} \log p_t(\mathbf{x})$$

Weight sparsification across tasks

We gradually remove inter-connected weights $W_{o,n}$ and $W_{n,o}$ to get a separated network with less previous knowledge loss.

Bridge phase

We re-connect two partitions θ_o and θ_n in order to learn the cross-task knowledge between them.

Re-connect separated partitions:

$$\langle \theta_s, [\theta_o, \theta_n] \rangle_t \longrightarrow \Theta_t$$

connect through zero-initialized weight

$$\lambda \mathcal{L}_{kd}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t) + (1 - \lambda) \mathcal{L}_{ce}(\mathcal{D}_t \cup \mathcal{M}_t, \Theta_t)$$

Experimental Results

 CIFAR-100 in ResNet-18 consistently achieves the highest accuracy

• Tiny-ImageNet in ResNet-18 (highest accuracy)

Average intra-new and intra-old accuracy
highest intra-new accuracy & preserving intra-old accuracy

