
Nearest Neighborhood Search in Spatial Databases
Dong-Wan Choi #1, Chin-Wan Chung #2

#CS Department, KAIST, Daejeon, Korea
1dongwan@islab.kaist.ac.kr 2chungcw@kaist.edu

Abstract—This paper proposes a group version of the nearest
neighbor (NN) query, called the nearest neighborhood (NNH)
query, which aims to find the nearest group of points, instead of
one nearest point. Given a set O of points, a query point q, and a
ρ-radius circle C, the NNH query returns the nearest placement
of C to q such that there are at least k points enclosed by C.
We present a fast algorithm for processing the NNH query based
on the incremental retrieval of nearest neighbors using the R-
tree structure on O. Our solution includes several techniques, to
efficiently maintain sets of retrieved nearest points and identify
their validities in terms of the closeness constraint of their points.
These techniques are devised from the unique characteristics of
the NNH search problem. As a side product, we solve a new
geometric problem, called the nearest enclosing circle (NEC)
problem, which is of independent interest. We present a linear
expected-time algorithm solving the NEC problem using the
properties of the NEC similar to those of the smallest enclosing
circle. We provide extensive experimental results, which show that
our techniques can significantly improve the query performance.

I. INTRODUCTION

Nearest neighbor (NN) search is one of the most fun-
damental problems, which has been extensively studied in
various fields of computer science such as data mining, image
processing, information retrieval, and spatial databases, to
name a few. Given a set O of points and a query point q,
the NN query finds the closest point in O to q. In spatial
databases, the NN query can be used in finding the nearest
point of interest (POI) such as a restaurant to a user’s current
location.
Nearest Neighborhood Query. In this paper, by extending
the NN query, we consider a group version of the NN query,
and thereby propose the nearest neighborhood (NNH) query
in spatial databases. Intuitively, the goal of the NNH query
is to find the location of the nearest group of points, namely
a neighborhood, which is different from returning the single
nearest point, namely a neighbor, in the usual NN query.
Thus, the primitive data type is extended from a neighbor to
a neighborhood.

The most crucial matter in the NNH query is how to define
the neighborhood. Our intuition is that a neighborhood can
be represented as a particular-sized region of interest (ROI)
containing multiple POIs. Of course, the number of points
constituting a neighborhood cannot be too small. Thus, in the
NNH query, we seek the nearest ROI (instead of the nearest
POI) which contains at least a particular number of POIs.

It is reasonable for each ROI to be a particular-radius circle
because it guarantees that distances between any pair of points
in the ROI are not larger than a certain threshold, and each

point is at most a particular distance away from the center
of the ROI. Therefore, we formally define the NNH query as
follows:
“Given a set O of points, a query point q, a positive number k,
and a circle C of a given radius ρ, the NNH query returns the
nearest location (center) of C such that the number of points
covered (enclosed) by C is at least k.”

Let us consider Figure 1 to show the difference between our
NNH query and the NN query. Suppose k = 3 and pi is closer
to q than pj , where i < j and i, j ∈ [1, 9]. Then the answer
of the normal NN query is p1. However, the NNH query will
return c, which is the center of the ρ-radius circle enclosing
three points, p2, p4, and p5, shown with a dotted line.

q

p1
p3

p2
p5

p4

c

p6

p7
p8

p9

ρ

Fig. 1. An example of the nearest neighborhood query (k = 3)

Applications. This group version of the NN query, i.e., the
NNH query, can play an important role in many applications
employing spatial databases as follows:

• Mobile Social Network. In mobile social networks, the
location-based mobile community can be typically formed
by a group of mobile subscribers whose distances from
the others are less than a particular threshold [1]. By
setting the radius parameter ρ to be such a threshold, the
NNH query can be utilized to extract mobile communities
nearby a user’s current location.

• Clustered kNN Search. The NNH query can also be
interpreted as a variant of the kNN query. In spatial
databases, the conventional kNN search may not give
the best answer especially when the resulting set of k
neighbors need to be clustered. Consider a tourist who is
looking for a location for a dinner. The usual kNN search
will return the group of k nearest restaurants to his/her
current location. However, they may not be clustered, and
if the tourist is not satisfied with the nearest restaurant,
s/he may have to travel a long distance to go to another
restaurant among other candidates in the group. In this
case, the best answer for the tourist will be the nearest
spot surrounded by clustered k restaurants, instead of k
nearest restaurants themselves. It is easy to see that this
can be answered by our NNH query using a small ρ value.

• Spatial Data Mining. It is also useful in spatial data

mining to find the nearest neighborhood. Many works in
spatial data mining involve a large amount of historical
location data, and aim to identify regions of interest that
are usually represented as spatial clusters [2], [3], [4].
In such works, it is not always necessary to partition
the all the location data into meaningful clusters, but to
identify one or a few clusters in the proximity of a location
of interest such as school, city hall, and museum. For
instance, in order to determine danger zones nearby a
school, it suffices to extract the clusters of crime locations
that are nearest to the school rather than extracting all the
clusters in the dataset.

Surprisingly, this fundamental spatial query has been rarely
studied in the literature. There are several attempts to apply
the concept of a group to the NN query, which are started from
the aggregate nearest neighbor (ANN) query [5] and further
extended to many variants based on it. However, the basic goal
of the ANN query is to find the closest single point to a group
of query points, which is far different from our objective in
the NNH query. To the best of our knowledge, the NNH query
is the first attempt to consider finding the nearest group of k
points that are clustered in a certain region.

Solution Overview. At first glance, it may appear that the
NNH query can be processed by clustering the entire dataset
using a sophisticated clustering algorithm, and thereby finding
the cluster nearest to the query point. Unfortunately, this
solution is not only inefficient due to an expensive clustering
task, but also incomplete for our NNH query. This is because
clustering algorithms basically aim to partition the given
dataset into a specific number of clusters, rather than find
all clusters containing at least k points. Moreover, our NNH
formulation limits the size of clusters, which makes the query
even more difficult to answer using an ordinary clustering
algorithm.

For a feasible solution that can answer the NNH query,
we should check out all combinations of k or more points,
or preprocess all such combinations in an index structure,
and then identify the closest one. This, however, suffers
from a prohibitively long running/preprocessing time and an
infeasibly massive volume of the index structure.

To address the challenges of processing the NNH query,
we propose an R-tree based algorithm together with several
techniques to improve the query performance. Our basic query
processing scheme is based on the incremental retrieval of
nearest neighbors by the best-first search using the R-tree.
More specifically, while incrementally visiting the next nearest
neighbor, we maintain a structure to keep track of clusters of
points retrieved so far and thereby checking whether those
clusters can be covered by a circle of a given size. The most
challenging task for this process is to update all the clusters
accordingly for every retrieval of the next nearest neighbor.
By means of the properties of the smallest enclosing circles,
we devise efficient update methods for the maintenance of
all the clusters under consideration. Furthermore, we propose
an effective pruning technique that substantially reduces the

search region for answering the NNH query and yet requires
only a constant times the space of the linear R-tree on O.
Nearest Enclosing Circle Problem. In addition, this paper
studies a novel geometric problem, called the nearest enclosing
circle (NEC) problem, which is an unavoidable sub problem to
obtain the exact answer of the NNH query. Assuming that we
eventually find a set of k points that can be covered by a circle
with a given radius, the NEC problem addresses the following
question: “how to determine the nearest center of the circle to
the query point while the circle encloses all such k points?”
This simple question, however, is not trivially solvable, and has
not been studied so far in the literature. To solve this problem,
we observe that the properties of the NEC problem are similar
to those of the smallest enclosing circle (SEC) problem that
has been well studied in computational geometry, and thereby
proposing a linear expected-time algorithm settling the NEC
problem.
Contributions. We summarize our main contributions as
follows:
• We propose a group version of the NN query in spatial

databases, called the nearest neighborhood (NNH) query,
which is useful in many applications of spatial databases.

• We devise a fast R-tree based algorithm to process the
NNH query based on the incremental retrieval of nearest
neighbors. We also devise efficient methods to keep track
of clusters of the retrieved nearest neighbors and a pruning
technique to reduce the search region of the NNH query.

• As a sub problem, we discover a new geometric problem,
called the nearest enclosing circle (NEC) problem, and
propose a linear expected-time algorithm for the NEC
problem.

• A thorough experimental study is performed to evaluate
our query processing algorithm. Experimental results show
that our proposed techniques can significantly improve the
query performance.

Organization. In Section 2, we first review existing works
related to the NNH query, and formalize the problem setting
and the NNH query in Section 3. In Section 4, the NEC
problem and its solution algorithm are presented. In Section
5, our proposed solution for processing the NNH query is
derived. In Section 6, we show experimental results, and finally
conclusions are discussed in Section 7.

II. RELATED WORKS

In the database community, the NN or kNN query process-
ing is mainly focused on devising the manner of exploiting the
underlying index structures such as the R-tree. An R-tree based
NN query processing algorithm is firstly proposed by Nick et
al. [6] with requirements from various geographic information
systems (GISs). Later, several variants of the NN algorithm
using the R-tree are presented in the literature [7], [8], and the
most representative one is the best-first NN search invented
by Hjaltason et al. [8]. The best-first algorithm maintains a
priority queue whose entries are either nodes or points while
traversing the R-tree from the root node in a best first manner.

The order of the queue entries is based on the minimum
distance from the query, and thereby we can incrementally
retrieve nearest neighbors in order. Our NNH query processing
algorithm also utilizes the best-first search for the incremental
retrieval of NNs.

Among numerous variants of the NN query, one interesting
branch is the aggregate nearest neighbor (ANN) query (a.k.a.
group nearest neighbor query) which is firstly proposed by
Papadias et al. [5] and further studied by others [9], [10], [11].
The goal of ANN is to find the optimal point closest to the
set Q of query points instead of one single query point. Even
though ANN also tackles the concept of the group in the NN
query, the problem setting of the ANN query is exactly the
opposite to NNH where a single query point is given and the
answer is involved with a group of target points.

Recently, the group nearest group (GNG) query, which is a
spatial query returning a group of points as our NNH query,
is proposed by Deng et al. [12]. However, the GNG query
is basically a general extension from the ANN query. Instead
of returning a single point that is closest to the set of query
points, GNN returns a set O′ of points such that the sum of all
the shortest distances of points in O′ from the set Q of query
points is minimized. Thus, points in the resulting set O′ of
GNN do not have to be clustered, which is a major difference
from NNH.

In the literature of spatio-textual queries (a.k.a. spatial
keyword queries), a novel type of queries, called collective
spatial keyword queries, are recently proposed by Cao et
al. [13] and Long et al. [14]. Also, a similar query, called
the k-nearest group query, without the textual constraint was
studied by Zhang et al. [15]. This type of queries share the
motivation similar to the NNH query in that its goal is to find
a group of spatio-textual objects that collectively satisfy user
requirements. However, in terms of the problem formulation,
the NNH query is quite different from the collective spatial
keyword query that does not consider any circular region.
Therefore, the NNH query cannot be solved by the algorithm
for processing the collective spatial keyword query.

The NNH query is also related to the type of spatial queries
on finding the optimal location in the sense that the ultimate
goal of NNH is to find the nearest location rather than the
nearest point. The most related work to NNH is the MaxCRS
query which is studied by Choi et al. [16]. The MaxCRS
query returns the center location of a circular area covering
the maximum number of points, which is similar to our NNH
query. The difference of NNH from MaxCRS is twofold: (1)
NNH has a query point while MaxCRS does not, and (2)
MaxCRS returns the densest location of a circle but NNH
finds the nearest location of a circle covering k points.

III. PROBLEM STATEMENT

In this section, we formally describe our problem environ-
ment and define the nearest neighborhood (NNH) query. Our
problem setting includes:
• a set O of 2D points
• a query point q, which is also a 2D point

• a distance parameter ρ, which is a positive real value
• a cardinality parameter k, which is a positive integer
• a Euclidean distance function between the points p and q,

denoted by dist(p, q)
Then we define the most important notion neighborhood,

which represents a region of interest (ROI) containing a
particular number of points as follows:

Definition 1 (Neighborhood): Let ρ be the distance con-
straint and k be the cardinality constraint. Then a neighbor-
hood with respect to ρ and k is a ρ-radius circle enclosing at
least k points in O.
We denote the neighborhood with ρ and k as NH(ρ, k). Then
the NNH query is defined as:

Definition 2 (Nearest Neighborhood Query):
Given O, q, ρ, and k, the nearest neighborhood (NNH) query
finds the center of the nearest NH(ρ, k) to q.

IV. NEAREST ENCLOSING CIRCLE PROBLEM

Prior to getting down to our query processing algorithm, in
this section we first study a sub problem, called the nearest
enclosing circle (NEC) problem, which must be tackled for
the exact NNH query processing. Let us start with a formal
definition of the NEC problem as follows:

Definition 3 (Nearest Enclosing Circle Problem): Given a
set P of K points, a ρ-radius circle Cρ, and a query point
q, find the nearest center c of Cρ to q such that all points in
P are enclosed by Cρ.
It is not difficult to notice that the only difference between
NEC and the NNH query is that all points in P should
be enclosed by a ρ-radius circle in NEC while k points
should be enclosed in NNH. This sub problem is essential
not only to find the final answer of the NNH query (i.e.,
the location of the nearest neighborhood) but also to evaluate
different neighborhoods for choosing the nearest one among
candidate neighborhoods. Figure 2 shows an instance of the
NEC problem where the answer is c; that is, the center of the
ρ-radius circle shown with a solid line. Other circles pictured
with dotted lines are also enclosing all points, but they are not
the answer, as they are not the closest one to q.

q
ρc

Fig. 2. An example of the NEC problem

Unlike its simple definition, this geometric problem is not
trivially solvable. The most straightforward algorithm for the
NEC problem is to consider all the feasible combinations of
points that can be laid on the boundary of a ρ-radius circle and
select the one with the nearest center while enclosing all points
in P . The running time of this algorithm is O(2K+K ·B(K)),
where K = |P | and B(K) is the total number of all possible
sets of boundary points of ρ-radius circles. This is because
we have to check all the combinations of points to determine

whether they can be together in the boundary of a ρ-radius
circle, and also check the points in each feasible set to see
whether the corresponding ρ-radius circle having the points
on its boundary covers all points in P .

It is worth noting that the NEC problem has not been studied
even in computational geometry. The problem most related to
NEC is the smallest enclosing circle (SEC) problem, which is
a well-known mathematical problem of computing the smallest
circle covering all of a given set of points, formally defined
as follows:

Definition 4 (Smallest Enclosing Circle Problem): Given a
set P of points, find the center of the smallest circle Cmin
such that all points in P are enclosed by Cmin.

Due to the properties of the SEC, it is known that the SEC
problem can be solved in expected-linear time by applying a
simple randomized technique [17].

Fortunately, the NEC of P has similar properties to the SEC
of P , even though the proofs behind those properties are quite
different. This enables us to adapt a randomized incremental
algorithm for solving the NEC problem as the SEC problem.

A. Properties of the Nearest Enclosing Circle

Now we investigate the important properties of the NEC,
which are key to solving the NEC problem efficiently. We
first show the uniqueness of the NEC of a given set P of
points in the following lemma, which is important because it
implies that the answer of the NNH query is also unique.

Lemma 1: If there exist ρ-radius circles that enclose a set
P of K points, then the closest such circle to the query point
q is unique:

Proof: The possible area of the center of the ρ-radius
enclosing circle of P is the intersection region, denoted by I ,
of K ρ-radius circles, each of which is centered at a point
in P . Such intersection region is convex by the fact that:
“Intersection of convex sets is also convex. [18]” Also, by
the closest point theorem [19], which says “there is a unique
closest point in any convex set to another point outside of the
convex set”, there is a unique closest point in I to q. This
implies that there is a unique center for the closest ρ-radius
circle to q.
Lemma 1 employs the ρ-radius circle centered at each point
in P . Let us use the term centered-circle to refer to each of
these circles. Thus, unless otherwise noted, it is supposed that
each centered-circle has ρ as its radius.

Next we consider the identification of such a unique NEC of
P . Thus, the following question needs to be addressed: “how
is the NEC of P defined?” This is also related to the number of
all possible sets of boundary points (i.e., |B(K)|) as mentioned
in the straightforward algorithm. About this question, the NEC
has one nice property as the following lemma:

Lemma 2: Let nc(P) be the NEC of P . Then nc(P) can
be defined by at most two points in P , which are laid on the
boundary of nc(P).

Proof: As stated in the proof of Lemma 1, the center of
nc(P) is the closest point to q in the intersection region of
all the centered-circles of P , which should be either (1) an

intersection of two centered-circles, or (2) the intersection of
the centered-circle of a point and the line passing through the
point and the query point. Therefore, at most two points can
define the NEC of P .
By Lemma 2, the time complexity of the aforementioned
straightforward algorithm turns out to be O(K3), since B(K)
is O(K2) and we can check all pairs of points in P instead
of all subsets of P . This is not still practically efficient.

To apply the randomized technique, the most important fact
behind the NEC is as follows: “If a point p ∈ P is outside of
the NEC of P \ {p} (i.e., nc(P \ {p})), then p must be laid
on the boundary of nc(P).” This is formally proved as the
following lemma:

Lemma 3: Let q be the query point, P be a set of points, R
be a possibly empty set of points with P ∩R = ∅, nc(P,R) be
the nearest circle to q enclosing all points in P and having all
points in R on its boundary, and p ∈ P . Then the following
holds:
1) If p ∈ nc(P \ {p}, R), then nc(P,R) = nc(P \ {p}, R).
2) If p /∈ nc(P \ {p}, R), then nc(P,R) = nc(P \ {p}, R ∪
{p}).
Proof: Due to the space limitation, we omit the details of

this proof. Please refer to our technical report [20]1.
Intuitively, Lemma 3 tells us how to determine the boundary

points of the NEC of a given set P of points, which completes
the answer of our initial question, i.e., how to define the NEC
of P , as stated in Lemma 2. Statement 1 of Lemma 3 says
that if a point p is already inside the current NEC, we do not
have to change the boundary of the NEC. However, according
to Statement 2 of Lemma 3, if a point p is outside of the
current NEC, such a point p must be a boundary point of the
newly updated NEC including p as well as all the points that
have been added so far. Based on these important properties,
we can efficiently find the NEC of a given set of points, as
explained in the following section.

B. Linear Expected-Time Algorithm for the NEC Problem

Now we are ready to apply the incremental randomized
algorithm to the NEC problem. The basic process is to add the
points in P one by one in a random order while maintaining
the NEC of the set of the points that have been added so
far. The details of the process, namely NEARESTCIRCLE, are
presented in Algorithm 1.

Whenever a point pi is considered, the NEC under con-
sideration is not updated if pi is already inside the current
NEC by Statement 1 of Lemma 3 (Lines 5 - 6). Otherwise,
pi must be in the boundary of the new NEC enclosing pi
together with all points that have been already considered (i.e.,
p1, p2, ..., pi−1) by Statement 2 of Lemma 3 (Lines 7 - 8).
This invokes another subroutine, namely NEARESTCIRCLE-
WITHPOINT, that computes the NEC of {p1, p2, ..., pi} with
the additional information that pi lies on the boundary of the
new NEC, which is presented in Algorithm 2. Algorithm 2
is basically the same as Algorithm 1 except for the way of

1https://cs.kaist.ac.kr/research/techReport

tackling the case when a point pj is not inside the current
NEC (Lines 6 - 7). Now we can determine, without invoking
any subroutines, the NEC of the set of points that have been
checked, since at most two points can uniquely define an NEC
by Lemmas 1 and 2.
ALGORITHM 1: NEARESTCIRCLE(P, q, ρ)
Input: P := a set of points, q := the query point, ρ := a given radius
Output: NEC := the nearest ρ-radius circle enclosing all points in P

1 p← an arbitrary point in P
2 NEC ← the nearest ρ-radius circle having p on its boundary
3 Compute a random permutation p1, ..., p|P |−1 of P \ {p}
4 for i← 1 to |P | − 1 do
5 if pi in NEC then
6 do nothing

7 else
8 NEC ← NEARESTCIRCLEWITHPOINT({p, p1, ..., pi−1}, pi, q,

ρ)

9 return NEC

ALGORITHM 2: NEARESTCIRCLEWITHPOINT(P ′, p′, q, ρ)
Input: P ′ := a set of points, p′ := a point 6∈ P ′, q := the query point,

ρ := a given radius
Output: NEC := the nearest ρ-radius circle enclosing all points in P ′ and

having p′ on its boundary
1 NEC ← the nearest ρ-radius circle having p′ on its boundary
2 Compute a random permutation p1, ..., p|P ′| of P ′

3 for j ← 1 to |P ′| do
4 if pj in NEC then
5 do nothing

6 else
7 NEC ← the nearest ρ-radius circle having p′ and pj on its

boundary

8 return NEC

Theorem 1: Given a set P of points, a query point q, and
a given radius ρ, Algorithm 1 correctly returns the ρ-radius
circle enclosing P nearest to q.

Proof: This follows from Lemmas 1, 2, and 3.
Theorem 2: The expected running time of Algorithm 1 is

O(K), where K = |P |.
Proof: This running time analysis is almost the same

as that presented in [17]. The basic idea is that Algorithm
2 is invoked with a probability that pi is not inside the
current NEC, which is 2/i since at most two boundary points
can update the current NEC. Therefore, the expected cost of
Algorithm 1 is linear to K since the cost of Algorithm 2 is
also linear to i with a probability of 2/i.

V. NEAREST NEIGHBORhood QUERY PROCESSING

In this section, we explain our solution for processing the
NNH query. First, we examine the hardness of NNH by
introducing an exhaustive solution. Next, we propose an R-
tree based query processing algorithm using the incremental
retrieval of nearest neighbors. Finally, we present a pruning
technique that utilizes the augmented R-tree with additional
information about the validity of each point in terms of the
closeness constraint.

A. Hardness of the NNH Problem

Obviously, the simplest approach for NNH is to consider all
the combinations of at least k points and then find the closest

one. Alternatively, we can preprocess all these possible subsets
of O in an extremely huge index structure and find the nearest
one to the query point from the index structure.

A natural question to be addressed is: “how many combi-
nations of points should we preprocess?” The answer seems
to be O(2N) at first glance, but actually it is O(N3). This is
because it suffices to consider only the circular convex sets.
Thus, if points p1 and p2 are very far away from each other,
then they do not have to be considered without the points in
the middle of them. More specifically, all we have to do is to
preprocess all the smallest enclosing circles (SECs) that can
be generated from O. It is proved that each SEC is unique
and can be defined by at most three boundary points [17].
Therefore, the number of all the possible SECs of O is at
most N3.

Once the nearest qualified SEC (i.e., it covers at least
k points and its radius is not larger than ρ) is found, the
corresponding NEC can be computed in linear time using our
algorithm presented in Section IV-B. Note that, after the first
SEC is found, we may have to find the next nearest qualified
SEC as long as its corresponding NEC can be closer to q than
the NEC previously found.

Unfortunately, in a practical situation, this O(N3) number
of cases is too large to be preprocessed in an index structure
as well as processed on the fly.

B. R-tree based NNH Query Processing Algorithm

In practice, only a constant times the number of points is
reasonable to be stored in a preprocessed index structure. This
leads us to use a basic index structure on O such as the R-tree
(or any kinds of spatial index structures having the linear space
complexity and supporting the incremental kNN search).

Similar to the exhaustive space approach, we only consider
the qualified SECs satisfying the constraints with ρ and k.
However, we now maintain SECs on the fly by incrementally
retrieving nearest points to q, instead of choosing the nearest
one among all the possible SECs stored in the preprocessed
structure. The overall steps of the query processing algorithm
are as presented in Algorithm 3.

This algorithm addresses the following challenging ques-
tions:
• How to efficiently retrieve all SECs for each pnext (Line 5)
• How to efficiently update SECs (Line 7)

1) SEC Retrieval: Let us first deal with the first issue,
i.e, how we can efficiently find all SECs for each nearest
point being retrieved (i.e., pnext). The most straightforward
approach is scanning all the SECs constructed so far and
checking whether there exists a point in the SECs intersecting
the 2ρ-radius circle centered at pnext. This method requires
O(T) time for each retrieval of pnext, where T is the number
of SECs being maintained.

A more improved approach is maintaining the R-tree-like
structure on SECs, and thereby retrieving the SECs which
overlap the 2ρ-radius circle centered at pnext by performing
a range search on the R-tree. This is basically rooted on
a window range search in the Cartesian coordinate system.

ALGORITHM 3: Overall Algorithm
Input: O := a set of points, q := a query point, ρ := a distance parameter,

ρ := a cardinality parameter
Output: NNH(ρ, k, q) := the nearest NH(ρ, k) to q

1 τ ←∞, NNH(ρ, k, q)← nil
2 repeat
3 pnext ← retrieve the next nearest point to q
4 S ← retrieve all SECs which can be expanded to a larger circle (but

smaller than a ρ-radius circle) including pnext or split into new
maximal SECs including pnext

5 foreach C ∈ S do
6 Update C for pnext to be included
7 if the number of points covered by C is not less than k then
8 NEC ← the nearest circle to q enclosing all points covered

by C
9 τ ′ ← the distance between NEC and q

10 if τ > τ ′ then
11 τ ← τ ′, NNH(ρ, k, q)← NEC

12 until There cannot exist a closer NEC to q than NNH(ρ, k, q)
13 return NNH(ρ, k, q)

Unfortunately, it is proved that the optimal index structure,
the k-d tree, still requires O(

√
N + K) time to process the

window range search in the 2D space, where N is the total
number of elements, and K is the number of elements to be
returned [17].

Our strategy is to transform the coordinate system of objects
(i.e., SECs), and thereby reduce the time complexity for
the task of finding SECs. We observe that each SEC can
be identified by its distance from the query point and the
angle range of its corresponding set of points, which naturally
results in the Polar coordinate system. Figure 3 shows an
example of transforming SECs in the Cartesian coordinate
system to those in the Polar coordinate system. Consider the
SEC C1 including three points that have been retrieved. It
can be represented as an arc in the Polar coordinate system
in the form of C1 =< d, [θ1, θ2] >. Whenever pnext is
retrieved, we find all the SECs Ci’s whose arcs in the Polar
coordinate system satisfy the following two conditions: (1)
dist(q, pnext) − 2ρ < Ci.d and (2) Ci.[θ1, θ2] overlaps the
angle range of the 2ρ-radius circle centered at pnext. In Figure
3, only C2 will be retrieved, as its one point can be enclosed
by a ρ-radius circle together with pnext.

q

d

θ1
θ2

pnext

2ρ

C1

C2

θ3

θ4
θ5θ6θ7

(a) Cartesian coordinate
system

C1

θ1 θ2

pnext

2ρ

θ3 θ4 θ5 θ6 θ7

d

C2

(b) Polar coordinate system

Fig. 3. Transformation of the coordinate system

The benefit of this transformation is that the window range
search is now transformed into a 3-sided range search which
is easier to solve. Note that one side is open in the condition
(1) while both two sides are closed in the condition (2). This
3-sided range search can be seen as a 1D range search on the

dimension of angles with an additional constraint on the lower
bound of distances from the query point q.

It is known that the 3-sided range search can be solved in
O(logN+K) using the priority search tree [21]. Even though
the priority-search tree works on the set of points with priority
values while we are interested in the set of angle intervals with
priority values (i.e., distances from the query point), we can
still utilize the priority-search tree on the set of end points of
intervals. This is due to the fact that at least one end point
of any intervals intersecting the queried range should also be
included in the range.

2) SEC Maintenance: After finding all the SECs that can
be combined with the next nearest neighbor (i.e., pnext), we
should update the SECs accordingly. Thus, for each SEC that
intersects the 2ρ-radius circle centered at pnext, we should
check whether the set of points of the SEC along with pnext
can be enclosed by a ρ-radius circle.

For the clarity of our argument, we first consider the cases
arising most frequently, where the cardinality of the set of
points covered by each SEC is less than k. Let C be an SEC
retrieved for pnext and PC be the set of points covered by C,
where |PC | < k. Then the following cases arise when updating
C based on pnext, which are also shown in Figure 4.

C

pnext

(a) Case 1

pnext

≤ 2ρ

C

(b) Case 2

pnext

> 2ρ

C

(c) Cases 3 and 4
Fig. 4. Cases arising when updating SECs

Case 1. pnext is inside C.
This is the simplest case, and it suffices to insert pnext into C
without any modification of C.
Case 2. {pnext} ∪ PC can be enclosed by a ρ-radius circle.
In this case, there are two issues to be addressed. The first one
is how to check whether {pnext}∪PC can be enclosed by a ρ-
radius circle, and the second one is how we can update C for
pnext to be also included in C. Of course, both issues can be
simply addressed by computing a new SEC of {pnext} ∪ PC .

For the first issue, there is an easy condition to test whether
pnext and PC can be together in a ρ-radius circle as follows:

dist(pnext, C) + C.r ≤ 2ρ,

where dist(pnext, C) is the distance between pnext and the
center of C and C.r is the radius of C. If this condition is
satisfied, we can guarantee that pnext and PC can be enclosed
by a ρ-radius circle without the computation of the new SEC.

However, due to the second issue, it is still necessary to
compute the SEC of pnext and PC . Even though computing
the SEC of a given set of points only requires linear time [22],
it is still expensive in the sense that such computation should
be performed for every SEC relevant to pnext, whenever pnext
is retrieved. Therefore, instead of maintaining exact SECs, we
maintain approximate SECs with a reasonable bound, which
can be computed and updated in a constant time. To this end,
we exploit the MBR of PC , and let the approximate SEC Ĉ
be the SEC enclosing all the corner points of the MBR of PC .

The approximation bound of this simple approach using the
MBR is proved to be

√
2 as follows:

Lemma 4: Let P be a set of points, C be the exact SEC of
P , and Ĉ be the approximate SEC of P that is the SEC of
the corner points of the MBR of P . Then Ĉ.r ≤

√
2 · C.r.

Proof: One important property of the MBR of P is that
there must be at least one point lying on each edge of the
MBR. Therefore, the exact SEC of P should touch every edge
of the MBR to enclose such points lying on the edges. This
implies that the diameter of C cannot be smaller than the
length of the longest edge of the MBR. Also, it is easy to
know that the diameter of Ĉ is the length of the diagonal of
the MBR. Since the diagonal of a rectangle cannot be

√
2

times longer than its longest edge, Ĉ.r should be smaller than
or equal to

√
2 · C.r.

Using the approximate SEC also helps to test the question
in the first issue. Thus, we can quickly check whether the SEC
of the corner points of the previous MBR and pnext is smaller
than or equal to a ρ-radius circle without computing the exact
SEC.

Case 3. {pnext} ∪ P ′ can be enclosed by a ρ-radius circle,
where P ′ ⊂ PC is the set of the points in PC that are located
in the 2ρ-radius circle centered at pnext.
In this case, computing the exact SEC of P ′, which is
separated from C, is unavoidable. Also, this newly generated
SEC must be inserted to the priority search tree for further
references by the next nearest neighbor.

Case 4. {pnext}∪P ′ cannot be enclosed by a ρ-radius circle,
where P ′ is the same as P ′ in Case 3.
This is the most difficult case arising when only subsets of
P ′ can be enclosed by a ρ-radius circle including pnext. In
this case, we need to compute all new maximal SECs from C
that are not contained by any other SECs. A natural question
is raised as follows: “How many new maximal SECs can be
generated at most for each update?” If the number of newly
generated maximal SECs is not reasonably small, the entire
query processing cost will become fairly high due to the
excessive creations of new SECs for this case.

Fortunately, we prove that the maximum number of newly
separated SECs from C is at most O(k) in the following
lemmas:

Lemma 5: Let C ′i be a maximal SEC including pnext
separated from C. Then the center of C ′i should be located
in a minimal intersection region I ′i such that (1) I ′i is covered
by the centered-circles of some points in P ′ together with the
centered-circle of pnext, and (2) I ′i does not contain any sub
intersection region covered by other centered-circles.

Proof: Let P ′i ⊂ P ′ be the set of points whose centered-
circles are covering I ′i . When the center of a ρ-radius circle is
placed in I ′i , which is inside the centered-circle of pnext, the
circle must contain all points in P ′i ∪ {pnext}. Furthermore,
since there is not any sub intersection region in I ′i , that is,
I ′i is minimal, any ρ-radius circles whose centers are in I ′i
cannot contain any other points besides P ′i ∪ {pnext}. Thus,
such circles are maximal in terms of the set of enclosed points.

Finally, the center of the SEC of P ′i ∪ {pnext} must be in I ′i .
Otherwise, the SEC cannot cover all points in P ′i ∪ {pnext}
since the radius of the SEC is not larger than ρ.
Lemma 5 indicates that the upper bound of the number of
maximal SECs that can be separated from C is identical to
the number of all the minimal intersection regions inside the
centered-circle of pnext. In the centered-circle of pnext, the
intersecting parts of other centered-circles can be seen as arcs
as shown in Figure 5. These arcs residing in the centered-circle
of pnext have the following property:

Lemma 6: Let C(pi) be the centered-circle of the point
pi. Then any pair of arcs inside C(pnext), which originate
from the centered-circles of P ′, can intersect at most once in
C(pnext).

Proof: Suppose by contradiction that there exists a pair
of arcs

_
x and

_
y that intersect twice in C(pnext). Since

all points in PC are covered by C, all the centered-circles
of P ′ ⊂ PC should cover one intersection region, that is,⋂
pi∈P ′ C(pi) 6= ∅. Also, the region of

⋂
pi∈P ′ C(pi) should

be outside of C(pnext) since {pnext}∪P ′ cannot be enclosed
by a ρ-radius circle by the definition of Case 4. This is a
contradiction to our first assumption implying that the entire
intersection region of the original centered-circles of

_
x and

_
y

is inside C(pnext).

+

+
+−

−

− pnext

Fig. 5. Arcs in C(pnext)

Now we are ready to answer our first question as the
following theorem:

Theorem 3: For each retrieval of pnext, the number of
newly created maximal SECs that are separated from one
existing SEC is at most O(k).

Proof: By Lemma 5, to prove this theorem, it suffices to
check whether the number of minimal intersection regions in
the centered-circle of pnext (i.e., C(pnext)) is at most O(k).
Since all the arcs residing in C(pnext) can meet only once
by Lemma 6, each minimal intersection region requires two
end points of arcs in the boundary of C(pnext). End points
of arcs in C(pnext) can be classified as a positive or negative
point by the order of the clockwise direction as pictured in
Figure 5. It is easy to notice that each minimal intersection
region consists of a pair of one positive and one negative
end points. Once an end point is consumed for defining a
minimal intersection region, it cannot further contribute to
other minimal intersection regions. Since there are less than
2(k − 1) end points in C(pnext), the number of minimal
intersection regions is at most O(k).

The remaining issue is how to construct such linear number
of new SECs from C efficiently. Our findings in the lemmas
and theorem above derive the following algorithm for this task:
1) Find all intersection points, which are end points of arcs,

in C(pnext).

C

p2

p1

p4

p3

p5

p6
pnext

ρ

I ′1
I ′2
I ′3

(a) Centered-circles

C

p2

p1

p4

p3

p5

p6 pnext

C ′
1 C ′

2

C ′
3

(b) Separated maximal SECs
Fig. 6. Finding maximal SECs separated from an existing SEC

2) Sort the set of end points in the clockwise direction.
3) While scanning the sorted set of end points, maintain a set

Ptemp of points and its MBR by performing the following
operations:

a) Whenever encountering a positive end point, insert the
corresponding point in P ′ into Ptemp

b) Whenever encountering a negative end point, delete
the corresponding point from Ptemp, and create a new
approximate SEC of Ptemp only if the previous end
point is positive.

The worst-case time complexity of this algorithm is
O(k log k), which is dominated by the sorting process in Step
2.

Example 1: Figure 6 shows an example of constructing
new maximal SECs from C. In this example, PC and P ′

are given as {p1, p2, p3, p4, p5, p6} and {p1, p4, p5, p6}, re-
spectively. Thus, the distances of pnext from p2 and p3 are
larger than 2ρ. Figure 6(a) illustrates the centered-circles of
P ′ (dotted line), the centered-circle of pnext (solid line), and
C (bold line). In the centered-circle of pnext, there are three
minimal intersection regions, I ′1, I ′2, and I ′3, which correspond
to the three maximal SECs in Figure 6(b), C ′1, C ′2, and C ′3,
including {p1, p6, pnext}, {p5, p6, pnext}, and {p4, p5, pnext},
respectively.

Now we discuss the cases for SECs covering k or more
points, i.e., |PC | ≥ k, even if they rarely happen. For Case 1
and Case 2, we can apply the same procedures as before.
However, in Case 3 and Case 4, we should find all the
intersection regions covered by at least k centered-circles as
well as minimal intersection regions covered by less than k
centered-circles. The number of such intersection regions is
still linear to |PC | as before because they still require a pair
of positive and negative end points that can contribute to only
one intersection region. Let t be |PC |. Then all our arguments
remain valid by substituting t for k.

3) Termination Condition: Our query processing algorithm
is based on the continuous retrieval of the next nearest
neighbor, and hence we should stop the retrieval when it is
guaranteed that there is no additional possible nearest neigh-
borhood beating the current best (i.e., closest) neighborhood.
Let τ be the current nearest distance so far. We can safely stop
finding next nearest neighbors when the following condition
holds:

dist(q, pnext) ≥ τ + ρ,

This condition is based on the following lemma:
Lemma 7: Let P and P ′ be sets of points, and let nc(P)

be the NEC of P with respect to q. If P ⊆ P ′, then
dist(nc(P), q) ≤ dist(nc(P ′), q).

Proof: Let I be the intersection region of centered-circles
of P , and I ′ be that of P ′. Then I ⊇ I ′. There should be a
point c0 in I which is closest to q, and c0 is the center of
nc(P). Since we cannot find any other point in I ′ that is
closer to q than c0, the center of nc(P ′) cannot closer to q
than the center of nc(P).
By Lemma 7, we can guarantee that once the nearest
NH(ρ, k) is found, it cannot get closer by adding a new point
to the NH(ρ, k).

C. Reducing the Search Region

The main overhead of our R-tree based NNH query process-
ing algorithm lies in the process of maintaining SECs. This is
even worse when the search region of the algorithm becomes
larger. The search region of our algorithm can be represented
as a circle with a radius as large as the distance from the query
point to the center of the nearest NH(ρ, k) plus ρ according to
the termination condition of the algorithm. Until we encounter
the first point belonging to the nearest NH(ρ, k), any other
points that have been retrieved and maintained are indeed
not necessary. It would be much better to discard these
unnecessary points, which leads to the substantial reduction
of the search region.

This motivates us to take into account an ideal search region,
which can be represented as a ring area whose inner circle is
the circle with a radius of the distance between the query and
the nearest feasible point that belongs to a NH(ρ, k), and
whose outer circle is the circle with a radius as large as the
radius of the inner circle plus 2ρ. The search region of our
R-tree based NNH algorithm and the ideal search region are
illustrated in Figure 7.

q

Nearest NH(ρ, k)

(a) Search region of the algorithm

q

Nearest NH(ρ, k)

(b) Ideal search region
Fig. 7. Search region of the NNH query

Our purpose is to reduce the search region needed in the
current algorithm to the ideal one. To this end, we observe the
fact that k is much smaller than N in practice. This gives an
opportunity to allocate more space in the linear R-tree on O
for storing additional information to prune unnecessary points.

Theoretically, this ideal search region is possible if we
associate each point p with an array of radii, denoted by
ri(p)’s, such that ri(p) is the radius of the smallest circle
enclosing p and any other i − 1 points, for i ∈ [1, κ], where
κ is the maximum of k values. Similarly, for each node in
the R-tree, we augment the minimum values of ri(p)’s of all
the points residing in the node. By doing this, whenever we

find the next nearest neighbor pnext, it suffices to consider
the points p’s satisfying the following condition: rk(p) ≤ ρ.
Otherwise, we can safely discard the point since it cannot
belong to a NH(ρ, k). This augmented R-tree only requires
O(κN) space, which is reasonable in practice in the sense that
κ� N .

Unfortunately, a major difficulty for the above approach lies
in the fact that computing the ri(p) value is an expensive task
whose running time turns out to be O(N log2N) [23]. There-
fore, the entire preprocess can be done in O(κN2 log2N)
time. Although this process will be performed prior to the
query processing phase, its high time complexity makes it
infeasible to do in most practical situations.

We remedy this issue by using approximate r̂i(p) values
instead of exact values. For this purpose, let us first consider
the following inequalities:

Lemma 8: Let nni(p) ∈ O be the i-th nearest neighbor of
p ∈ O. Then the following inequalities hold:

1

2
dist(p, nni−1(p)) ≤ ri(p) ≤ dist(p, nni−1(p))

Proof: Let us first deal with the first inequality. Suppose
that there exists a circle Ci containing p and other i − 1
points such that the radius of Ci, denoted by Ci.r, is smaller
than dist(p, nni−1(p))/2. This means there are i − 1 points
that are at most 2 · Ci.r away from p where 2 · Ci.r <
dist(p, nni−1(p)). This is a contradiction to the definition of
dist(p, nni−1(p)).

The second inequality is due to the fact that there must be
i − 1 points within a circular region whose center is p and
radius is dist(p, nni−1(p)).
Based on Lemma 8, we set r̂i(p) to be dist(p, nni−1(p))/2,
which is indeed a 2-approximation of ri(p). Computing r̂i(p)
values is much cheaper than ri(p) values, since it suffices
to perform the κNN query for each p. This task is known
as the all nearest neighbors problem that can be solved
in O(κN logN) time [24], which is much smaller than
O(κN2 log2N).

VI. EXPERIMENTAL STUDY

In this section, our objective is to check whether our
query processing algorithm can be done in a reasonably small
running time. Since there is no existing algorithm processing
the NNH query that can be compared with our algorithm, we
focus on showing the effectiveness of our techniques, that
is, whether they can improve the overall query processing
performance, particularly in terms of the cost of maintaining
SECs on the fly.

A. Setup

Algorithms. We use the following different versions of the
proposed query processing algorithm presented in Sections
V-B and V-C:

BRUTEFORCE. This algorithm uses a simple list to main-
tain SECs. Thus, for every retrieval of an NN point, it scans
the list, and thereby finding the SECs intersecting the retrieved
NN point.

CARTESIAN. This algorithm uses an in-memory R-tree to
maintain SECs. Each SEC is stored in the in-memory R-tree
in the form of an MBR. For every retrieval of an NN point,
it performs a window range search on the R-tree to find the
SECs intersecting the 2ρ-radius circle centered at the retrieved
NN point.

POLAR. This algorithm uses the priority search tree to
maintain SECs. As mentioned in Section V-B1, each SEC is
maintained in the form of an arc, which consists of an angle
interval and the distance from the query point. We implement
the priority search tree on points represented by the angle and
the distance from the query point, and store two end points
of each arc in the tree. For every retrieval of the NN point, it
performs a 3-sided range search on the priority search tree to
find all the relevant SECs.

POLARREDUCED. This algorithm is the same as POLAR
except that it uses the augmented R-tree presented in Section
V-C thereby reducing the search region of POLAR close to the
ideal search region. We set the maximum value of k, denoted
by κ, to be 64.

The straightforward solution presented in Section V-A is not
feasible to process with a large dataset, and hence it cannot
be compared with other algorithms2.

Datasets. Our experiments are based on three datasets in the
real world, which are namely NE, RR, and CAS including
123,593, 257,942, and 196,902 points of interest. All of them
are originated from the TIGER project at the US Census Bu-
reau and can be downloaded from the Chorochronos website3

(formerly the R-tree Portal). It is worthwhile to note that these
datasets have been widely used in plenty of existing works on
spatial databases. The data space has a length of 109 for each
dimension, and the coordinates of each point are normalized
accordingly.

Parameters. There are several parameters that can affect the
execution time of the NNH query. The first category is the
basic query parameters of NNH, ρ and k. It is expected that
larger ρ and k will increase the running time for processing the
query. Another interesting parameter is the distance between
the query point and the nearest neighborhood finally returned,
denoted by τ . Similarly, a larger τ might increase the execution
time.

Basically, when we vary one parameter, the other parameters
should be fixed. However, this is not easy in the NNH query
since there is a correlation between ρ and τ or between k and
τ . Thus, we cannot fix both ρ and τ when varying k. Similarly,
when varying ρ, it is not feasible to fix both k and τ .

To tell the conclusion first, for all three real datasets,
the query performance was more affected by τ than ρ. In
this sense, when varying k, we attempt to fix τ values by
accordingly adjusting ρ values. Also, when varying ρ (τ), we
fix k values and do not care τ (ρ) values. For the experiment
on varying τ , with several target τ values for a fixed k, we

2With a toy dataset including only 1000 points, its preprocessed structure
was built in about 6 days.

3http://www.chorochronos.org

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50

 0

 2

 4

 6

 8

 10
E

x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(a) NE

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 10 20 30 40 50

 0

 2

 4

 6

 8

 10

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(b) CAS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 10 20 30 40 50

 0

 2

 4

 6

 8

 10

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(c) RR
Fig. 8. Execution time with varying cardinalities of neighborhood, k

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1.5X10
8

1.7X10
8

1.8X10
8

2.0X10
8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Distance (τ)

Bruteforce
Cartesian

Polar
PolarReduced

(a) NE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1.5X10
8

1.8X10
8

2.1X10
8

2.4X10
8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Distance (τ)

Bruteforce
Cartesian

Polar
PolarReduced

(b) CAS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

3.0X10
7

6.0X10
7

9.0X10
7

1.2X10
8

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Distance (τ)

Bruteforce
Cartesian

Polar
PolarReduced

(c) RR
Fig. 9. Execution time with varying distances from the query point, τ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1.0X10
6

1.5X10
6

2.0X10
6

2.5X10
6

3.0X10
6

 0

 2

 4

 6

 8

 10

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(a) NE

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

6.0X10
5

6.5X10
5

7.0X10
5

7.5X10
5

8.0X10
5

 0

 2

 4

 6

 8

 10

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(b) CAS

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

5.0X10
5

1.0X10
6

1.5X10
6

2.0X10
6

2.5X10
6

 0

 2

 4

 6

 8

 10

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Bruteforce
Cartesian

Polar
PolarReduced

Distance (τ)

(c) RR
Fig. 10. Execution time with varying radii of neighborhood, ρ

find appropriate ρ values by performing our algorithm tens
of times (once per random query), and then reversely use the
found ρ values to do the experiments on varying τ .
Environment. All the algorithms are implemented in C++,
and all the experiments are conducted on a PC running Linux
(Ubuntu 13.10) equipped with Intel Core i7 CPU 3.4GHz and
16GB memory.

B. Comparison of the Running Time

For the first experiment, we compare the execution time
that effectively reveals the overall query performance in the
sense that our algorithms cannot be regarded as I/O dominant
tasks. Each time is average over hundreds of query results with
randomly selected query points.
Effect of the Cardinality (k) of the Nearest Neighborhood.
Figure 8 shows the execution time when varying k while
trying to minimize the effect of τ . Even though τ cannot
be exactly fixed due to randomly selected query points, we
could keep τ values relatively stable by adjusting ρ values.
As expected, the running time of each algorithm increases
as k increases. Our first interest is to check whether our
technique of transforming the coordinate system is effective
to reduce the query time. Based on the results of CARTESIAN,
BRUTEFORCE, and POLAR, POLAR is upto 27.4 and on the
average 4.2 times faster than BRUTEFORCE, and upto 2.5 times
and on the average 1.4 times faster than CARTESIAN. This

result shows that the retrieval and maintenance of SECs based
on the Polar coordinate system is effective in improving the
query performance. Next, to investigate the effectiveness of
our pruning technique presented in Section V-C, we compare
the result of POLARREDUCED with those of other algorithms.
In all cases, POLARREDUCED outperforms other algorithms,
which is upto 587.5 times faster than BRUTEFORCE and upto
52.7 times faster even compared with POLAR. On the average,
POLARREDUCED is 57.0 times faster than BRUTEFORCE, and
8.6 times faster than POLAR.

An interesting point in this result is that CARTESIAN is even
slower than BRUTEFORCE in some cases such as the result
shown in Figure 8(c). This is because the cost of updating
the in-memory R-tree containing SECs is higher than that of
updating the simple list used by BRUTEFORCE, even if the
retrieval of relevant SECs in the R-tree might be faster.

Effect of the Distance (τ) of the Nearest Neighborhood.
Figure 9 shows the execution time when varying τ with a fixed
k = 30. The result shows that the correlation between τ and
the execution time is not dramatically high, even though its
overall trend can be seen that the bigger τ , the longer execution
time. This is because distributions of our real datasets are far
from the uniform distribution. Thus, our real datasets have
plenty of empty or sparse areas containing only few points,
along with relatively dense areas containing many points.

Similar to the result in Figure 8, POLAR outperforms

10
2

10
3

10
4

 10 20 30 40 50

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Polar
PolarReduced

Distance (τ)

(a) NE

10
1

10
2

10
3

10
4

10
5

 10 20 30 40 50

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Polar
PolarReduced

Distance (τ)

(b) CAS

10
1

10
2

10
3

 10 20 30 40 50

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Cardinality of Neighborhood (k)

Polar
PolarReduced

Distance (τ)

(c) RR
Fig. 11. Number of neighbors retrieved with varying cardinalities of neighborhood, k

10
2

10
3

10
4

10
5

1.5X10
8

1.7X10
8

1.8X10
8

2.0X10
8

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

Distance (τ)

Polar PolarReduced

(a) NE

10
2

10
3

10
4

10
5

1.5X10
8

1.8X10
8

2.1X10
8

2.4X10
8

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

Distance (τ)

Polar PolarReduced

(b) CAS

10
1

10
2

10
3

10
4

3.0X10
7

6.0X10
7

9.0X10
7

1.2X10
8

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

Distance (τ)

Polar PolarReduced

(c) RR
Fig. 12. Number of neighbors retrieved with varying distances from the query point, τ

10
2

10
3

10
4

10
5

1.0X10
6

1.5X10
6

2.0X10
6

2.5X10
6

3.0X10
6

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Polar
PolarReduced

Distance (τ)

(a) NE

10
2

10
3

10
4

10
5

6.0X10
5

6.5X10
5

7.0X10
5

7.5X10
5

8.0X10
5

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Polar
PolarReduced

Distance (τ)

(b) CAS

10
1

10
2

10
3

10
4

5.0X10
5

1.0X10
6

1.5X10
6

2.0X10
6

2.5X10
6

 0

 2

 4

 6

 8

 10

N
u

m
b

e
r

o
f

N
e

ig
h

b
o

rs
 R

e
tr

ie
v
e

d

D
is

ta
n

c
e

 (
X

1
0

8
)

Radius (ρ)

Polar
PolarReduced

Distance (τ)

(c) RR
Fig. 13. Number of neighbors retrieved with varying radii of neighborhood, ρ

CARTESIAN and BRUTEFORCE in all cases, and PO-
LARREDUCED shows the best query performance. Further-
more, the difference of the execution time of POLARREDUCED
from those of others tends to grow when τ increases, which
well explains that the area differences of the search regions
of POLARREDUCED and others increase as τ increases (recall
Figure 7).

Effect of the Radius (ρ) of the Nearest Neighborhood.
Figure 13 shows the execution time when varying ρ with a
fixed k = 30. Differently from the expectation that a lager ρ
will increase the execution time, the execution time decreases
as ρ increases. This is because a bigger ρ tends to decrease
τ (even if the correlation is not very stable, depending on
distributions of real datasets), and therefore the execution
time decreases for such smaller τ values. Thus, as mentioned
earlier, τ is a more dominant factor on the query performance
than ρ.

Overall ratings of the algorithms are the same as before in
this experiment. In every case, POLARREDUCED is the best,
and followed by POLAR. Note that the case of large ρ values
can be interpreted as a trivial case, meaning that k is too small
compared with ρ. This is the reason why the performance gap
is tiny in some datasets when ρ values are large.

C. Comparison of the Number of Neighbors Retrieved

Another performance metric employed in our experiments
is the total number of points that are retrieved until the final
nearest neighborhood is found. This is the primary metric for
showing the effectiveness of our pruning technique presented
in Section V-C. Since the search regions of BRUTEFORCE,
CARTESIAN, and POLAR are the same, we only use POLAR
and POLARREDUCED for this experiment.

Effect of the Cardinality (k) of the Nearest Neighborhood.
Figure 11 shows the number of retrieved neighbors with
various k and stable τ . As expected, POLARREDUCED probes
a much smaller number of points than POLAR does. Note that
the y-axis is in the log scale. On the average, POLAR requires
912.0 times k points retrieved until the nearest neighborhood is
found while POLARREDUCED needs only 23.8 times k points.
This result justifies that our approximate r̂i(p) values are fairly
effective to reduce the search region and thereby improving the
overall query performance as shown in Figure 8.

One minor drawback is that r̂i(p) seems to get less accurate
as k increases, which can be deduced from the result that the
performance gap gets smaller for a larger k.

Effect of the Distance (τ) of the Nearest Neighborhood.
Figure 12 shows the number of retrieved neighbors when

varying τ with a fixed k = 30. As with the graphs in
Figure 11, the y-axis is set in the log scale. In a macro
view, when τ increases, the performance gap gets larger due
to the fact that the area of search region is mathematically
proportional to the square of its radius, which is τ2. However,
the result does not show a strong correlation between τ and
the number of neighbors retrieved, and it shows some cases
where the number of processed neighbors decreases even when
τ increases. This also well explains why the fluctuation in the
result in Figure 9 is high. Instead, it can be seen that the
overall query performance is more related to the number of
retrieved points by the observation that the graphs in Figure
9 and their corresponding graphs in Figure 12 show similar
patterns to each other.

Effect of the Radius (ρ) of the Nearest Neighborhood.
Figure 13 shows the number of retrieved neighbors when
varying ρ with a fixed k = 30. Overall, graphs show the pattern
similar to those of Figure 10. Also, we can again observe that
the trend of τ values, which are varied by ρ values, is similar to
that of the number of retrieved neighbors. Thus, when varying
ρ and fixing k, the performance is influenced by τ values rather
than ρ value.

VII. CONCLUSIONS

In this paper, we proposed a group version of the NN query,
called the NNH query, inspired by the requirement of finding
the nearest group of points that are closely located, instead of
the nearest single point. For the NNH query processing, we
discovered an interesting geometric problem, called NEC, that
has not been studied in the literature of computer sciences. We
found and proved key properties of the NEC similar to those of
the SEC so that the incremental randomized algorithm can be
adapted to solve the NEC problem. Moving back to the main
goal of the present paper, we proposed an R-tree based NNH
query processing algorithm and developed efficient methods
of maintaining and updating SECs on the fly based on some
theoretical findings with respect to SECs and NECs. Also, we
grasped the fact that an important factor affecting the overall
query performance is the size of the search region required to
process the NNH query, and presented a way of augmenting
the R-tree with additional information that can considerably
reduce the search region. All the experimental results based
on real datasets justified that our techniques are effective to
improve the query performance.

In closing, we would like to briefly discuss about our future
work. In this work, we have only considered circular clusters,
but non-circular clusters such as rectangular clusters are also
useful in various applications. Our next plan is to devise
similar yet different techniques for finding the nearest non-
circular neighborhood.

ACKNOWLEDGMENT

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract UD140022PD, Korea.

REFERENCES

[1] R. Lübke, D. Schuster, and A. Schill, “Mobilisgroups: Location-based
group formation in mobile social networks,” in Workshop Proceedings
of IEEE International Conference on Pervasive Computing and Com-
munications, 2011, pp. 502–507.

[2] S. Srivastava, S. Ahuja, and A. Mittal, “Determining most visited
locations based on temporal grouping of gps data,” in Proceedings of
the International Conference on Soft Computing for Problem Solving
(SocPros), 2011, pp. 63–72.

[3] S. Tiwari and S. Kaushik, “Extracting region of interest (roi) details
using lbs infrastructure and web-databases,” in Proceedings of the 13th
IEEE International Conference on Mobile Data Management (MDM),
2012, pp. 376–379.

[4] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from gps trajectories,” in Proceedings of the 18th
International Conference on World Wide Web (WWW), 2009, pp. 791–
800.

[5] D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui, “Aggregate nearest
neighbor queries in spatial databases,” ACM Trans. Database Syst.
(TODS), vol. 30, no. 2, pp. 529–576, 2005.

[6] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in Proceedings of ACM International Conference on Management of
Data (SIGMOD), 1995, pp. 71–79.

[7] K. L. Cheung and A. W.-C. Fu, “Enhanced nearest neighbour search on
the r-tree,” SIGMOD Record, vol. 27, no. 3, pp. 16–21, 1998.

[8] G. R. Hjaltason and H. Samet, “Distance browsing in spatial databases,”
ACM Trans. Database Syst. (TODS), vol. 24, no. 2, pp. 265–318, 1999.

[9] F. Li, B. Yao, and P. Kumar, “Group enclosing queries,” IEEE Trans.
Knowl. Data Eng. (TKDE), vol. 23, no. 10, pp. 1526–1540, 2011.

[10] H. Li, H. Lu, B. Huang, and Z. Huang, “Two ellipse-based pruning
methods for group nearest neighbor queries,” in Proceedings of ACM
International Workshop on Geographic Information Systems (GIS),
2005, pp. 192–199.

[11] H. L. Razente, M. C. N. Barioni, A. J. M. Traina, C. Faloutsos, and
C. T. Jr., “A novel optimization approach to efficiently process aggregate
similarity queries in metric access methods,” in Proceedings of ACM
Conference on Information and Knowledge Management (CIKM), 2008,
pp. 193–202.

[12] K. Deng, S. W. Sadiq, X. Zhou, H. Xu, G. P. C. Fung, and Y. Lu, “On
group nearest group query processing,” IEEE Trans. Knowl. Data Eng.
(TKDE), vol. 24, no. 2, pp. 295–308, 2012.

[13] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi, “Collective spatial
keyword querying,” in Proceedings of ACM International Conference
on Management of Data (SIGMOD), 2011, pp. 373–384.

[14] C. Long, R. C.-W. Wong, K. Wang, and A. W.-C. Fu, “Collective spatial
keyword queries: a distance owner-driven approach,” in Proceedings
of ACM International Conference on Management of Data (SIGMOD),
2013, pp. 689–700.

[15] D. Zhang, C.-Y. Chan, and K.-L. Tan, “Nearest group queries,” in
Proceedings of the Conference on Scientific and Statistical Database
Management (SSDBM), 2013, p. 7.

[16] D.-W. Choi, C.-W. Chung, and Y. Tao, “A scalable algorithm for
maximizing range sum in spatial databases,” PVLDB, vol. 5, no. 11,
pp. 1088–1099, 2012.

[17] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computa-
tional Geometry 3rd revised ed. Springer-Verlag, 2008.

[18] J.-B. H. Urruty and C. Lemaréchal, Fundamentals of convex analysis.
Springer, 2001.

[19] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty, Nonlinear programming:
theory and algorithms. John Wiley & Sons, 2013.

[20] D.-W. Choi and C.-W. Chung, “Nearest neighborhood search in spatial
databases,” Department of Computer Science, KAIST, Tech. Rep. CS-
TR-2014-388, 2014.

[21] E. M. McCreight, “Priority search trees,” SIAM J. Comput., vol. 14,
no. 2, pp. 257–276, 1985.

[22] E. Welzl, “Smallest enclosing disks (balls and ellipsoids),” in Results and
New Trends in Computer Science. Springer-Verlag, 1991, pp. 359–370.

[23] A. Efrat, M. Sharir, and A. Ziv, “Computing the smallest k-enclosing
circle and related problems,” Comput. Geom., vol. 4, pp. 119–136, 1994.

[24] P. M. Vaidya, “An O(n logn) algorithm for the all-nearest.neighbors
problem,” Discrete & Computational Geometry, vol. 4, pp. 101–115,
1989.

