
Finding the Minimum Spatial Keyword Cover

Abstract—The existing works on spatial keyword search focus
on finding a group of spatial objects covering all the query
keywords and minimizing the diameter of the group. However,
we observe that such a formulation may not address what
users need in some application scenarios. In this paper, we
introduce a novel spatial keyword cover problem (SK-COVER
for short), which aims to identify the group of spatio-textual
objects covering all keywords in a query and minimizing a
distance cost function that leads to fewer proximate objects in the
answer set. We prove that SK-COVER is not only NP-hard but
also does not allow an approximation better than O(logm) in
polynomial time, where m is the number of query keywords.
We establish an O(logm)-approximation algorithm, which is
asymptotically optimal in terms of the approximability of SK-
COVER. Furthermore, we devise effective accessing strategies and
pruning rules to improve the overall efficiency and scalability. In
addition to our algorithmic results, we empirically show that our
approximation algorithm always achieves the best accuracy, and
the efficiency of our algorithm is comparable to a state-of-the-art
algorithm that is intended for mCK, a problem similar to yet
theoretically easier than SK-COVER.

I. INTRODUCTION
You are planning a golf vacation with a few friends, and

want to look for a golf course, a hotel, a restaurant and a pub
that are close to each other so that you and your friends can
hang out as much as possible instead of spending a lot of time
on the way. So, you ask a spatial keyword search engine like
Google Maps a query “hotel, golf, restaurant, pub” and expect
that you can get answers, where each answer contains a hotel,
a golf course, a restaurant, and a pub so that the distances
within a group are as small as possible. It would be nice if
multiple facilities are co-located at a place, such as a hotel
with a pub.

A series of recent studies [1], [2], [3], [4], [5], [6], [7]
proposed efficient algorithms to find a group of objects that
cover a given set of query keywords and are proximate to each
other in space. While we will review them in Section II, most
of them follow the mCK query model [1] and optimize the
diameter of the group of objects in space, that is, minimizing
the maximum distance between two objects in a group. Can
this model really solve the query you have in the above
example?

Figure 1 shows the query results on a real dataset about the
spatial points of interest (POI) in UK, which is downloaded
from http://www.pocketgpsworld.com. We use query {hotel,
golf, restaurant, pub}. The mCK query returns a group of
four POIs covering the four query keywords, as shown in
Figure 1(a). While the four POIs are close to each other and
are within a small diameter, still you have to go to different
places for different activities. Figure 1(b) shows a group of
three POIs also covering all the four query keywords. Although
those three POIs are within a larger diameter than the group
in Figure 1(a), the total distance from the hotel to the other
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Fig. 1. Experimental result with the set of query keywords, {hotel, golf,
coffee, pub}, using the UK dataset

two POIs in the group is indeed smaller than the total distance
between the hotel and the other three POIs in the group in
Figure 1(a), as detailed in Figure 1(c). Moreover, the sum of
pairwise distances in Figure 1(b) is also smaller than that in
Figure 1(a). The group in Figure 1(b) is a better choice for
you since you can travel a shorter distance among POIs in the
group. In addition, the hotel and the pub are co-located.

Motivated by the above observations, in this paper, we
propose a new type of spatial keyword queries, namely spatial
keyword cover (SK-COVER for short). The major difference
between SK-COVER and the previous work is that SK-COVER
adopts different optimization objectives. Technically, given a
set of query keywords, we try to find a group of spatial objects
C such that each object is associated with some keywords and
all the query keywords are covered, and we try to minimize a
distance cost function f(C).

Since from a simple keyword query it is hard to obtain
the detailed information about the traversal pattern among the
facilities queried, in this paper we consider the following two
distance cost functions. In the first case, for a group of objects
C, we assume an object serves as the hub, consider the sum
of distances from a hub to the other objects in C, and use
an upper bound of the sum of distances corresponding to the
worst hub in the answer set as the measure of the distance cost.
In the second case, we use an upper bound of the sum of all
pairwise distances as the measure. In general, other distance
functions can be used.

Employing a non-trivial distance cost function other than
the diameter makes our SK-COVER problem substantially dif-
ferent from the existing work mainly on the mCK problem [1].
Minimizing the diameter in mCK does not necessarily lead
to reducing the number of objects in the answer set. In the
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distance cost functions considered in our SK-COVER problem,
since each object in the answer set incurs a cost, minimizing
the cost function tends to reduce the number of objects in the
answer set and finding proximate objects simultaneously. As
we know, users tend to prefer answers containing fewer objects
in spatial keyword searches.

As we will show, the SK-COVER problem is very challeng-
ing even we optimize (|C|−1) ·d and

(|C|
2

)
·d, respectively, as

the upper bounds of the two distance cost functions, where d
is the diameter of the set C. Not to mention that SK-COVER
is NP-hard as mCK is, it turns out that SK-COVER does not
even allow any polynomial time algorithms that can achieve
a constant approximation ratio. This is somewhat surprising,
since there exist constant-factor approximation algorithms for
mCK [8], [7]. Thus, the challenges here are not only how
to design an efficient algorithm but also how to achieve the
approximation bound as small as possible.

One may think that SK-COVER can be seen as a combi-
nation of SET-COVER and mCK. Consequently, it may appear
that a simple greedy algorithm can settle our problem, since
the well-known greedy algorithm for SET-COVER achieves the
optimal approximation bound in polynomial time [9], [10].
Unfortunately, as to be shown, a simple greedy approach
adapted from the greedy solution to SET-COVER can produce
an unreasonably inaccurate answer whose cost can be O(m)
times larger than the optimum in the worst case, where m is
the number of query keywords.

In this paper, we propose a fairly accurate solution for
settling SK-COVER. The essential idea is that once we fix
the diameter part in the cost function, the greedy algorithm
for SET-COVER can be used effectively to solve our problem.
More specifically, we consider every group of objects whose
diameter is no more than the distance between a particular pair
of objects in the group. Then, it suffices to choose the group of
minimum approximate cost obtained by solving SET-COVER
locally with respect to the group. We prove that this strategy
guarantees the optimal approximation bound for SK-COVER
in polynomial time. To make our algorithm more scalable and
practically efficient, we devise effective pruning techniques and
advanced accessing methods that can substantially reduce the
search space and improve the scalability.

We make the following contributions in this paper. First, we
formalize the novel SK-COVER problem of spatial keyword
search, which addresses some critical application scenarios
where the existing mCK problem is not effective. Second, we
prove that SK-COVER is NP-hard and cannot be approximated
by a constant factor in polynomial time. Third, we establish
a polynomial time approximation algorithm that achieves the
asymptotically optimal approximation, and design effective
pruning rules and accessing methods to reduce the search space
and improve the scalability. Last, we show by experiments that
our algorithm gives the most accurate answers all the time.
This is consistent with the theoretical quality analysis.

The rest of the paper is organized as follows. Section II
surveys the related work. Section III defines the problem,
discusses its hardness and the feasibility of extending some
existing solutions to our problem. Section IV presents our ap-
proximation algorithm as well as the scalable implementation.
All our algorithms are experimentally evaluated in Section V.
We conclude the paper in Section VI.

II. RELATED WORK
Our SK-COVER problem broadly belongs to the general

topic of spatial keyword search, which has received a great
deal of attention from the database community in recent years.
Earlier works on this topic mainly focus on identifying a single
object whose location and textual attribute satisfy a given
type of query. A typical problem is finding the closest (or
top-k) spatio-textual object(s) containing all the query key-
words [11], [12], [13], [14]. Some works on a slightly different
version exploit the textual similarity as well as the spatial
proximity [15], [16], [17]. All these works are inherently
different from SK-COVER in that our goal is to find a group of
objects, instead of a single object, that together cover all query
keywords. There are also a number of different problems in
literature about spatial keyword search. A systematic review
of all these problems is far beyond the scope and capacity of
this paper. Therefore, in the rest of this section, we focus on
only the problems closely related to SK-COVER, namely the
mCK query problem and the collective spatial keyword query
(CoSKQ) problem. Both problems have similar goals as ours,
that is, to find a group of objects covering all keywords and
minimizing a given spatial cost function.

A. mCK Queries
Given a set of m query keywords, the answer of the mCK

query is a group of m objects covering all the keywords and
having the smallest diameter, where the diameter of a group
is the maximum pairwise distance in the group. This problem
was firstly proposed by Zhang et al. [1], [2], where an R∗-
tree based index structure, called the (virtual) bR∗-tree, was
designed as the underlying structure for their proposed exact
algorithms. These works assume that every object is associated
with only one keyword. Therefore, an answer group always
has exactly m objects. As the mCK query problem has been
shown NP-hard [8], [7], the exact algorithm [1], [2] runs in
exponential time in the worst case.

To answer mCK queries efficiently, some approximation
algorithms have been developed. Fleisher and Xu [8] showed
that, when each object has only one keyword, the problem of
answering an mCK query can be efficiently and approximately
solved by finding the smallest color-spanning circle, and
provided a ( 2√

3
)-approximation algorithm using the farthest

color Voronoi diagram [18]. Recently, Guo et al. [7] further
relaxed the constraint so that each object can be associated with
multiple keywords, and proposed a ( 2√

3
+ ε)-approximation

algorithm.
In addition, Deng et al. [6] proposed an exact algorithm for

a variant of the mCK query problem, called the best keyword
cover problem. In this version, each object carries a weight
representing a rating score and the objective is to maximize
the minimum weight in the group and minimize the diameter
of the group through a linear combination.

All the above works on the mCK queries and their variants
commonly attempt to minimize the diameter of answer groups.
None of them consider the cardinality of answer groups. As
shown in Section I, mCK queries cannot fully address what
users need in some spatial keyword search scenarios.

B. Collective Spatial Keyword Queries
Cao et al. [3] introduced the collective spatial keyword

queries (CoSKQ), which is an extension of the mCK query
problem. The key difference is that a CoSKQ query specifies
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a particular location. Correspondingly, one additional objective
is to minimize the distance between the query location to
the result group. The overall objective is to optimize a linear
combination of the distance between the query location and
the answer group and the diameter of the answer group. They
presented both exact algorithms and approximation algorithms
along with the proof of NP-hardness of CoSKQ. Long et al. [5]
further improved the scalability by proposing a distance owner-
driven approach. Zhang et al. [4] studied one variant of
CoSKQ, called the density-based collective spatial keyword
query.

It is obvious that the SK-COVER problem cannot be solved
by any of the algorithms for CoSKQ since SK-COVER only
specifies a set of query keywords but no query location.

C. Optimal Route Queries
Optimal route queries, also known as trip planning

queries [19], are another branch of works related to our moti-
vation. The basic objective of these works is to find the shortest
route that covers all the query categories (i.e., keywords). For
example, one may want to find the shortest route starting at
home and passing through a gas station, a bank, and a post
office. Li et al. [19] proposed trip planning queries (TPQ),
which specify both the starting location and the destination
location. Later, Ma et al. [20] studied a variant of TPQ without
destination locations. Furthermore, Sharifzadeh et al. [21]
added a total order constraint on the types of locations, and
Chen et al. [22] and Li et al. [23] extended the query by
considering partial order constraints. Similar to CoSKQ, all
these works cannot be applied to address our problem because
they commonly have a starting (or destination) location and
optionally an ordering constraint.

III. PROBLEM DEFINITION AND ANALYSIS
In this section, we formulate the problem of SK-COVER,

examine the hardness and approximability of the problem, and
investigate whether the existing methods can be adapted to
solve the SK-COVER problem.

A. Problem Formulation
Consider a set O of spatio-textual objects, where each

object o ∈ O is a point in the Euclidean 2D space,
and is associated with a set of keywords, denoted by
o.τ = {t1, t2, . . . , t|o.τ |}. A keyword query is a set T =
{t1, t2, . . . , t|T |} of keywords. The spatial keyword cover
problem (SK-COVER for short) is to find a subset C ⊆ O such
that all the query keywords are covered, that is, T ⊆ ⋃o∈C o.τ ,
and the following cost function f(C) is minimized.

f(C) = (|C| − 1) · max
o,o′∈C

dist(o, o′), (1)

where dist(o, o′) is the Euclidean distance between o and
o′. Here, similar to the methodology adopted in the previous
studies on mCK, in the distance cost function we use the
diameter of the group as the upper bound of the distance
between a pair of objects in the group.

For the ease of presentation, most of this paper will con-
centrate on the cost function in Equation 1, which corresponds
to the maximum hub-based distance mentioned in Section I.
Moreover, the distance cost in Equation 1 is also the upper
bound of the longest traversal distance among all the points in
the answer set. We will discuss how to extend the solution to
handle the sum of all pairwise distances in Section IV-D.

B. Hardness and Approximability
We first establish the hardness of SK-COVER as follows.
Theorem 1: The SK-COVER problem is NP-hard.

Proof: We prove the hardness of SK-COVER by reduction
from SET-COVER. Let U be a universe set containing all items
and S = {S1, S2, . . .} be a collection of sets, where Si ⊆ U .
Then, SET-COVER aims to find the smallest collection X∗ ⊆ S
of sets whose union covers U .

To construct the corresponding instance of SK-COVER, we
first create |S| objects in the same location, and associate each
object oi with Si. Also, we create a dummy object o′ having
a dummy item (i.e., keyword) x′ /∈ U at the location whose
distance from any oi is 1, and finally let T be U ∪ {x′}.

If we can find a group C = {o′, o1, o2, . . . , ok} of objects,
covering T such that f(C) = (|C| − 1) · dist(o′, oi) =
k for SK-COVER, then there exists a collection X =
{S1, S2, . . . , Sk} of sets covering U of size k for SET-COVER.

Since SK-COVER is NP-hard, it is natural to ask how well
we can approximate the optimum in SK-COVER.

Theorem 2: There is no polynomial time algorithm that
can return an approximate solution to SK-COVER with an
approximation bound better than O(log |T |) unless P = NP .

Proof: Due to the proof of Theorem 1, we can see that
SET-COVER is a special case of SK-COVER in which only one
object with an exclusive keyword lies in a different location
and the other objects are restricted to the same location.
Also, there is a restriction on T to have all the keywords
in the database. This implies that SK-COVER cannot be
approximated in a bound better than SET-COVER. The lower
bound on approximating SET-COVER in polynomial time is
known to be O(log n) unless P = NP [10], where n is the
number of elements to be covered. Thus, SK-COVER does not
allow a bound better than O(log |T |) in polynomial time.

C. Adapting the Existing Algorithms
Given the similarity among mCK, SET-COVER and SK-

COVER, it is important to check whether the approximation
algorithms for those two problems can be straightforwardly
extended to settle SK-COVER.

1) Approximating mCK: Since the resulting group of the
extended version of the mCK query [7] also covers all the
query keywords, can we use a solution for mCK as an
approximation for SK-COVER? The following lemma shows
that the approximation ratio can be as large as a factor of the
input size (i.e., the number of query keywords).

Lemma 1: Let Ĉ be an optimal group for an instance of the
mCK query, and C∗ be an optimal group for the corresponding
SK-COVER instance. Then, f(Ĉ)

f(C∗) = O(|T |) in the worst case.
Proof: Consider two groups C1 and C2, both of which

covering T , such that the diameter of C1 equals that of C2.
Now assume |C1| = |T | and |C2| = 2. Then, f(C1) =

|T |
2 ·

f(C2), but the mCK query processing algorithm may return
C1 instead of C2 because their diameters are tie.

Even if we can obtain an optimal answer to an mCK query,
the answer is not good with respect to the cost function in SK-
COVER.

2) Greedy Approach to SET-COVER: For the SET-COVER
problem, there is a well-known greedy algorithm, which guar-
antees an H(n)-approximation bound [9], where n is the total
number of elements and H(n) =

∑n
i=1

1
i . This bound is

asymptotically optimal in terms of the approximability due
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Fig. 2. The worst case example of the greedy approach for SK-COVER

to H(n) ≈ lnn [10]. This fact suggests the possibility of
following a greedy scheme to address SK-COVER as well.

The greedy algorithm for SET-COVER picks the set con-
taining the largest number of uncovered elements at each step.
Correspondingly, we can choose the most promising object at
each step. The issue here is how to measure how promising
an object is. Intuitively, a promising object should satisfy
the following conditions: (1) it contains as many uncovered
keywords as possible; and (2) if there are already some
objects selected in the previous steps, it is as close to the
selected objects as possible. If we do not consider condition
(2), then the algorithm is exactly the same as the greedy
algorithm for SET-COVER. Obviously, it does not guarantee
any approximation bound for SK-COVER because the diameter
of the group of minimum cardinality can be arbitrarily large.
Therefore, it is essential to consider both conditions, namely
maximizing the covering power and minimizing the incurred
distance.

Unfortunately, even if we carefully design a benefit or
pricing function reflecting both the covering power and the
incurred distance, such as price(o) = incurred distance by o

covering power of o , the
scheme of adding objects one by one in a greedy way still
cannot guarantee a non-trivial approximation bound. We intu-
itively explain this by an example shown in Figure 2, where
T = {t1, t2, . . . , t|T |}, ε is close to 0, and ` � ε. In this
example, the optimal group covering T is C∗ = {o0, o′}
(plotted in black points) whose diameter is ` and therefore
f(C∗) = `. However, the greedy algorithm may output Ĉ =
{o0, o1, . . . , o|T |}. Here, f(Ĉ) = (`+ε)(|T |−1) ≈ `(|T |−1).
With out loss of generality, we assume that our greedy algo-
rithm selects o0 as the first object, since both o0 and o′ contain
the maximum number of uncovered keywords (i.e., |T |2 ) in the
first place. Then, for the next promising object, the algorithm
may choose oi instead of o′ where i = 1, 2, . . . , |T | − 1, since
the price of choosing oi is small enough (due to ε � `) to
discard the benefit of choosing o′ from covering |T |

2 more
keywords. Consequently, o′ will never be selected until all the
keywords of T are covered. In this example, the approximation
bound of the simple greedy scheme for SK-COVER can be as
large as O(|T |) due to the fact that the incurred distance and
the covering power of each object are not correlated at all.

IV. AN ASYMPTOTICALLY OPTIMAL APPROXIMATION
ALGORITHM AND SCALABLE TECHNIQUES

In this section, we first develop a polynomial time algo-
rithm that achieves the asymptotically optimum approximabil-
ity. Then, we discuss several techniques to boost the scalability
on large datasets.

L(o1, o2)

o2o1

o3 √
3 · dist(o1, o2)

Fig. 3. The lune with respect to o1 and o2

ALGORITHM 1: PolyLune (O, T )
Input: O := a set of objects, T := a set of query keywords
Output: C := a subset of O whose objects together cover T

1 O′ ← objects relevant to T ; C ← ∅;
2 fmin ← ∞;
3 foreach o1 ∈ O′ do
4 foreach o2 ∈ O′ do
5 L(o1, o2)← objects inside the lune w.r.t. o1 and o2;
6 if L(o1, o2) covers T then
7 X ← GreedySetCover (L(o1, o2), T );
8 if f(X) < fmin then
9 fmin ← f(X);

10 C ← X;

11 return C;

A. A Polynomial Time Algorithm
We want to devise a new algorithm that guarantees a non-

trivial approximation bound.
1) Basic idea: A simple greedy approach fails to achieve

a good approximation bound basically because SK-COVER
has two aspects to be optimized, namely the diameter and the
cardinality of the answer set. Our idea is to fix one aspect
for a sub-problem instance and optimize the other aspect with
respect to the sub-problem. To obtain the global answer, we
can return the best among the results from all sub-problems.

To be more specific, our strategy is to consider a collection
O of subsets of O, in each of which the diameter is fixed to a
particular value. We find the best solution among all solutions
for the subsets in O. If there is a feasible answer for a given
SK-COVER problem instance, then there must exist a subset
in O that covers T , and vice versa.

In order to define such a group of objects whose diameter
can be fixed, we need the following notion.

Definition 1 (Lune): Given a pair of objects o1 and o2, the
lune with respect to o1 and o2 is the intersection region of
the two circles centered at o1 and o2, respectively, of radius
dist(o1, o2).

Figure 3 shows the lune with respect to o1 and o2. We
use L(o1, o2) to denote the set of objects inside the lune with
respect to o1 and o2. The lune with respect to o1 and o2 has
the following properties.

Property 1: Every object within a distance up to
dist(o1, o2) from both o1 and o2 must be in L(o1, o2).

Object o3 in Figure 3 is an example for Property 1.
Property 2: For any objects o and o′ in L(o1, o2),

dist(o, o′) ≤
√
3 · dist(o1, o2).

2) The Algorithm: Algorithm 1 shows the pseudocode of
our approximation method PolyLune .

First, we filter out the objects not containing any keywords
in T . Let O′ be the set of remaining objects (Line 1). Denote
by fmin the minimum cost identified so far, which is initially
set to ∞ (Line 2). For the lune with respect to each pair
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of objects o1 and o2 in O′, if L(o1, o2) covers T , then
we perform the greedy algorithm for SET-COVER, namely
GreedySetCover [9], on L(o1, o2) by fixing the diameter to
dist(o1, o2) (Lines 3-7). The distance cost of the resulting
group X , denoted by f(X), is calculated using Equation 1.
If this cost is smaller than the current value of fmin, then we
update the set C and fmin accordingly (Lines 8-10). Finally,
the best C of the smallest fmin value is returned (Line 11).

3) Analysis: The correctness of PolyLune is established by
the following lemma.

Lemma 2: Given a set of objects O and a keyword query
T , there exists a group C ′ ⊆ O covering T if and only if
PolyLune returns a non-empty group covering T .

Proof: Consider two objects o′1, o
′
2 ∈ C ′ such that

dist(o′1, o
′
2) is the diameter of C ′. Then, every object in C ′ is

in lune L(o′1, o
′
2) due to Property 1, that is, C ′ ⊆ L(o′1, o

′
2).

This lune must be processed by the algorithm because the
algorithm checks every pair of objects in O′. It is easy to see
that the other way is also true.

Theorem 3 (Complexity): Algorithm PolyLune has time
complexity O(|O′|2∑o∈O′ |o.τ |+ |O||T |+

∑
o∈O |o.τ |).

Proof: First, identifying all objects relevant to T requires
O(|O||T | + ∑

o∈O |o.τ |) time by checking for each object
o ∈ O if o.τ ∩T 6= ∅. For each pair of objects o1, o2 ∈ O′, we
retrieve all objects in L(o1, o2), which entails O(|O′|) time,
and then GreedySetCover is performed. Using the method
invented by Cormode et al. [24], GreedySetCover can be
done in time linear to the total number of items in the
collection, and therefore it entails O(

∑
o∈L(o1,o2) |o.τ |) time

for each pair. Since
∑
o∈L(o1,o2) |o.τ | is up to

∑
o∈O′ |o.τ |

that dominates O(|O′|), the total cost of processing all pairs
is O(|O′|2∑o∈O′ |o.τ |). The theorem is proved.

Please note that the cost O(|O′|2∑o∈O′ |o.τ |) likely domi-
nates the entire complexity in practice because it is most likely
to be higher than O(|O||T |+∑o∈O |o.τ |).

Now let us examine the approximation bound guaranteed
by the PolyLune algorithm.

Lemma 3: The PolyLune algorithm returns an O(log |T |)-
approximate answer for SK-COVER.

Proof: Let C∗ be the optimal group, and Ĉ be the group
returned from PolyLune . Then, we need to prove:

f(Ĉ) ≤ O(log |T |) · f(C∗).
Let r∗ be the diameter of C∗. Then, f(C∗) = r∗·(|C∗|−1).

Also, there must be two objects o∗1, o
∗
2 ∈ C∗ such that

dist(o∗1, o
∗
2) = r∗, implying that there must be the correspond-

ing lune with respect to o∗1 and o∗2 such that C∗ ⊆ L(o∗1, o
∗
2)

by Property 1. Since the algorithm investigates every pair of
objects, it also performs GreedySetCover on L(o∗1, o

∗
2) and

returns the corresponding set X∗ ⊆ L(o∗1, o
∗
2). Due to the

theorem on the approximation bound of GreedySetCover [9],
we have |X∗| ≤ (ln |T |+ 1) · |C∗|.

Now let us consider L(ô1, ô2), where Ĉ comes from.
According to the PolyLune algorithm, it holds that f(Ĉ) ≤
f(X∗). Also, by Property 2, it holds that f(X∗) ≤

√
3 · r∗ ·

(|X∗| − 1). Combining all together, we obtain

f(Ĉ) ≤ f(X∗) ≤
√
3 · r∗ · (|X∗| − 1)

≤
√
3 · (ln |T |+ 1) · |C

∗|
|C∗| − 1

· r∗ · (|C∗| − 1)

= O(log |T |) · f(C∗)

The following theorem states one of the main results of this
paper, which follows directly from Theorem 2 and Lemma 3.

Theorem 4: PolyLune is asymptotically optimal in terms
of the approximability of SK-COVER.

B. Enhancing the Scalability
Although PolyLune runs in polynomial time, it is still

costly on a large spatio-textual dataset. Now let us examine the
steps in Algorithm 1 one by one, and explore how to implement
the steps efficiently.

1) Initialization: In the first step, PolyLune computes O′,
the set of objects relevant to T . To this end, we use inverted
lists as our underlying index on the entire dataset O rather
than a big spatial index augmented with textual information.
This decision is based on the fact that, for this type of spatial
keyword queries not involving a query location, using inverted
lists outperforms a big spatial index [2]. This is probably
because the effect of spatial pruning is much weaker than that
of textual pruning.

During this step, we also build two structures on O′ that
will be used later. The first one is a virtual bR∗-tree [2]. The
other one is a hash table, denoted by HT , which maps a
cardinality value w to the corresponding set of all objects that
have w keywords, that is,HT [w] returns a set of objects having
w keywords.

While retrieving each object relevant to T from the inverted
lists corresponding to the keywords in T , we do the following.
First, for each object o such that o.τ ∩ T 6= ∅, that is, o is
relevant to T , we make a copy of o, discard all irrelevant
keywords in o.τ , that is, those keywords in o.τ−T , and add the
copy of o into O′. After this step, for every object o ∈ O′ only
the keywords relevant to T are considered and the irrelevant
keywords are discarded. Thus, for any o ∈ O′, |o.τ | = |o.τ ∩
T |. Hereafter, for the sake of simplicity, we overload the notion
o.τ to denote o.τ ∩ T .

Second, we insert the copy o ∈ O′ into the virtual bR∗-tree
as in [2]. Finally, we insert the copy o into the |o.τ |-th slot of
the hash table (i.e., HT [|o.τ |]) that is the set of objects having
exactly |o.τ | keywords relevant to T .

Through this process, we can substantially reduce the size
of the virtual bR∗-tree and the cost of processing each o.τ .
Furthermore, the task of removing all irrelevant keywords does
not require scanning all the keywords originally residing in o.τ .
Instead, we first set o.τ = ∅ for every o ∈ O′. Then, for each
object ot in the inverted list of a keyword t ∈ T , we add t
to ot.τ ∩ T , which requires only |o.τ ∩ T | insertions for each
o ∈ O′.

2) Pruning Strategies: PolyLune needs to check the lune
with respect to every pair of objects in O′, which is the major
cost in the algorithm. We suggest two main pruning strategies,
namely spatial pruning and cardinality pruning to speed up
this step.

a) Spatial pruning: We observe that, for an object oi ∈
O′, not every other object in O′ needs to be considered as a
partner of oi for checking the corresponding lune. Specifically,
if we know the lower bound on the cardinality of any feasible
group covering T , then we can limit the search space for each
object as stated in the following result.

Lemma 4: Let fmin be the minimum cost obtained so far
in PolyLune , and kLB be a lower bound on the cardinality of
any group covering T . For any o1, o2 ∈ O′, if dist(o1, o2) ·
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(kLB−1) ≥ fmin, then the lune L(o1, o2) cannot have a group
whose cost is smaller than fmin.

Thus, for each oi ∈ O′, it suffices to consider only the other
objects whose distances from oi are smaller than fmin

kLB−1 . The
smaller fmin obtained during the process, the smaller search
region for each of the objects to be checked.

Now the remaining question is how to get kLB as large
as possible. To obtain a reasonably tight kLB , we perform
GreedySetCover on O′ regardless of the diameter aspect. Let
x̂ be the cardinality of the resulting group. Then, we set kLB
to |x̂|. Note that this does not invalidate Lemma 3, since x̂ is
at most (ln |T |+ 1) times larger than the optimum [9].

b) Cardinality pruning: This pruning technique makes
good use of the accessing order of the objects in O′. Basically,
we should traverse the objects in the descending order of their
textual cardinalities (i.e., |o.τ |) using our hash table HT built
in the initialization step. More specifically, we use an integer
variable w ∈ [1, maxo∈O′ |o.τ |] that stores a cardinality value.
Then, we access objects in O′ as follows. First, we set w to
maxo∈O′ |o.τ |. Then, for each o ∈ HT [w], we check every
lune with respect to o and o′ ∈ O′ such that dist(o, o′) <
fmin/kLB according to Lemma 4. If w > 1, then we decrease
w by one and repeat the same process.

One nice property of this accessing scheme is that we
can terminate the entire process earlier if we know the lower
bound on the diameter of any feasible group covering T . The
correctness of this is guaranteed by the following result.

Lemma 5: Let rLB be the lower bound on the diameter
of any group covering T . Then, the algorithm PolyLune can
terminate once d |T |w − 1e · rLB ≥ fmin.

Proof: First of all, since w is the current upper bound of
the cardinality value, each of the unprocessed objects that have
not been checked must have w or less keywords. In order to
cover T , at least d |T |w e objects are required. Therefore, the cost
of using some unprocessed objects is at least d |T |w − 1e · rLB .
The claim follows immediately.

How to get a good estimation of rLB? Actually, the
maximum rLB is the exact answer of the corresponding mCK
query. For the efficiency, we use the greedy approximation
algorithm in [7], which returns a 2-approximation. Therefore,
if r̂ is returned from the greedy mCK query processing
algorithm, then rLB is set to r̂/2.

3) Reducing the Cost of Processing Each Lune: Our prun-
ing rules can reduce the search space. However, for the objects
that are not pruned, we still need to retrieve them in lunes,
that is, to test for each of the lunes defined on the remaining
objects whether the lune covers T . A naı̈ve implementation
is to perform a 2D range search on the virtual bR∗-tree on
O′ with the area of each lune to identify the objects in the
lune, and check if those objects together cover T . The cost
of processing the lune with respect to a pair o1, o2 ∈ O′ is
O(
√
|O′| +∑o∈L(o1,o2) |o.τ |), where the former part is due

to a range search [25] and the latter part is due to scanning
all the objects in the lune for the covering test. This is a large
overhead, since it applies to every pair of objects not pruned.

In order to make this operation more efficient, we observe
the following. For objects o1, o2 ∈ O′, the lune with respect to
o1 and o2 belongs to the circle of radius dist(o1, o2) centered
at o1. Moreover, for o1, o2, o3 ∈ O′ such that dist(o1, o3) ≤
dist(o1, o2), the lune with respect to o1 and o3 also belongs to
the circle of radius dist(o1, o2) centered at o1 (see Figure 3).
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o6

o7

θ3
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θ6
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θ7 θ5

θ3 θ2 θ4

[θ3, θ4]

[θ3, θ6] [θ2, θ4]

θ1

(b)

Fig. 4. The polar coordinate system with respect to o and its corresponding
polar-tree

Accordingly, if a circle centered at o1 does not cover T , we can
prune all lunes inside the circle, such as the lune with respect
to o1 and o3 such that dist(o1, o3) is up to the the radius of
the circle, because those lunes cannot cover T , either.

Moreover, the lune with respect to o1 and o3 can help to
process the lune with respect to o1 and o2. Thus, for each
o ∈ O′, if we process the other objects as a partner of o in
the ascending order of the distance from o, then all objects
previously processed can be reused for processing the lune
with respect to o and the partner of o being considered. To
this end, we first design a structure for each o ∈ O′, which
maintains the set of nearest neighbors (NNs for short) of o,
called the polar-tree.

a) Polar-tree: To define the polar-tree, let us first con-
sider a polar coordinate system with respect to o ∈ O′ and
NNs of o, in which each NN of o is represented by an angle
from a particular direction and a distance from o. In our polar
coordinate system, we use clockwise angles where the 12
o’clock position is 0. Then, the polar-tree with respect to o
is defined as follows.

Definition 2 (Polar-tree): For o ∈ O′, the polar-tree of o,
denoted by PT o, is a binary search tree on the angles of
NNs of o, where each node u ∈ PT o is augmented with the
following information.
• θ(u): its key, i.e., an angle;
• o(u): the corresponding object, i.e., one of NNs of o whose

angle is θ(u);
• d(u): the distance from o to o(u), i.e., dist(o, o(u));
• I(u): an angle range [θmin, θmax], where θmin and ; θmax

are the minimum angle and the maximum angle, respec-
tively, in the subtree of u; and

• W (u): the set of keywords contained by o(u) and all
descendants of o(u).
Example 1: Figure 4 shows an example of the polar-tree

with respect to o. In Figure 4(a), the i-th NN of o is denoted
by oi, and its corresponding angle is denoted by θi. In the
clockwise direction, angles are θ3, θ7, θ6, θ1, θ2, θ5, and θ4
in order. The polar-tree of o is shown in Figure 4(b), where,
for each node u, θ(u) is in the circle depicting u and I(u) is
also shown in the right side of the circle for non-leaf nodes.

b) Processing Each Object Using the Polar-tree: Using
the polar-tree, we can process each lune as follows. For each
o ∈ O′, we incrementally retrieve the NNs of o by performing
the nearest neighbor search on the virtual bR∗-tree on O′ that
is built in the initialization step. We insert each retrieved NN of
o, denoted by onext, into the polar-tree of o, denoted by PT o,
using its angle as the key. During the insertion, we update
I(u) and W (u) accordingly for each node u along the search
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path. Moreover, we perform a range search on PT o in order
to retrieve all the objects residing in the lune with respect to
o and onext.

Thanks to the polar-tree, we can concentrate on only the
NNs of o that are already processed in order to process the
next NN of o being retrieved.

The next question is how to define a range for each onext
to retrieve all the objects in L(o, onext). Let θnext be the
angle of onext. We can obtain all the objects in L(o, onext) by
fetching every object from PT o whose angle is in the range
[θnext − π

2 , θnext +
π
2 ]. As illustrated in Figure 5, the set

of objects returned from this range search may be a superset
of L(o, onext). Thus, we need to filter out the objects that
are not in L(o, onext). Instead of exhaustively checking every
object in the resulting set, we conduct this refinement task
in a piggybacking manner during the range search using the
following result.

Lemma 6: For o ∈ O′, let onext be the next NN of o
being retrieved of angle θnext, and let r = dist(o, onext).
For each node u fetched from the range search on PT o with
range [θnext − π

2 , θnext +
π
2 ], the following statements hold:

1) If θ(u) ∈ [θnext− π
3 , θnext+

π
3 ], then o(u) ∈ L(o, onext).

2) If 2r sin (θnext + θ(u)− π
2 ) ≥ d(u), then o(u) ∈

L(o, onext).
Proof: Statement 1 is apparent as illustrated in Figure 5.

To prove Statement 2, we consider one general example
shown in Figure 6, where θ(u) ∈ [θnext − π

2 , θnext +
π
2 ]

but o(u) /∈ L(o, onext). In order for o(u) to belong to
L(o, onext), dist(o, o(u)), i.e., d(u), must be less than or equal
to the length of op. Because the length of onextp is equal to
dist(o, onext) = r, the triangle poonext is an isosceles triangle.
Therefore, the length of op is 2 × r cos (∠poonext), which is
equal to 2r sin (θnext + θ(u)− π

2 ).
Using Lemma 6, whenever we encounter a node u whose

θ(u) is within range [θnext− π
2 , θnext+

π
2 ], we can determine

whether o(u) is a false positive.
It is worth noting that a range search on the polar-tree is

much cheaper than a 2D window range search on the virtual
bR∗-tree due to the following reasons. First, since the polar-
tree is just a 1D binary search tree, a 1D range search on the
polar-tree entails only O(log n) time, which is far less than
the cost of a 2D range search on the virtual bR∗-tree (or any
2D index structures), which is O(n1/2) [25], where n is the
total number of elements. Also, each polar-tree with respect to
o ∈ O′ maintains only the NNs of o, and hence its size will
be much smaller than that of the virtual bR∗-tree on O′.

c) Early Test on Covering T : The polar-tree often
enables us to check whether a lune covers T (or not) without
fetching all the objects in the lune. For this early test, we use
the augmented values in each node u, namely I(u) and W (u).

Let onext be the next NN being retrieved, and θnext be

its angle based on o ∈ O′. During the insertion of onext into
PT o, we can determine early whether L(o, onext) covers T or
not by considering the nodes along the search path using the
following result.

Lemma 7: If {o, onext} do not cover T , then
1) For the root node u of PT o, if |W (u)∪ onext.τ | < |T | or

I(u)∩ [θnext− π
2 , θnext+

π
2 ] = ∅, then L(o, onext) cannot

cover T .
2) For any node u ∈ PT o, if I(u) ⊇ [θnext − π

2 , θnext +
π
2 ]

and |W (u)∪onext.τ | < |T |, then L(o, onext) cannot cover
T .

3) For any node u ∈ PT o, if I(u) ⊆ [θnext − π
3 , θnext +

π
3 ]

and |W (u) ∪ onext.τ | = |T |, then L(o, onext) covers T .
Proof: Since each o ∈ O′ has only keywords relevant to

T , |W (u)∪onext.τ | < |T | if and only if (W (u)∪onext.τ) ⊂ T
and hence W (u) ∪ onext.τ does not cover T .
1) In this case, either the entire set of objects in PT o together

with onext still cannot cover T , or there is no object in
L(o, onext) other than o and onext.

2) In this case, I(u) ⊇ [θnext − π
2 , θnext +

π
2 ] if and only if

(W (u) ∪ onext.τ) ⊇
⋃
o∈L(o,onext)

o.τ .

3) Similar to the above case,
⋃
o∈L(o,onext)

o.τ ⊇ (W (u) ∪
onext.τ) = T

Note that this early test is performed during the insertion of
each NN retrieved into the polar-tree, and hence it does not
entail any additional cost. Also, updating both W (u) and I(u)
for each node along the insertion path can obviously be done
in constant time. Similar to the virtual bR∗-tree, a keyword set
insertion can be done in constant time by a bitmap structure.

C. The Scalable Algorithm
Now we present a scalable version of our approximation

algorithm, called ScaleLune , in Algorithm 2, which follows
the overall flow of PolyLune in Algorithm 1 yet employs all
the techniques explained in Section IV-B.

We start with copying all the objects relevant to T into O′
from the inverted lists on O and discarding irrelevant keywords
from each of relevant objects. In the meantime, we gradually
build the virtual bR∗-tree on O′ and a hash table on O′ as
explained in Section IV-B1 (Lines 1-3). We also compute kLB
and rLB , which are used in our pruning scheme. As explained
in Section IV-B2, kLB can be obtained from GreedySetCover
on O′, and rLB is returned from the greedy algorithm for
answering the mCK query [7], namely GreedyMCK (Lines
4-5). Also, we initialize the variables fmin and C (Line 6).

The next step is to process every lune with respect to a
pair of objects in O′ (Lines 7-25). According to our cardinality
pruning scheme presented in Section IV-B2, we traverse every
object in O′ in the descending order of |o.τ | (Line 7). To
this end, we employ our hash table, denoted by HT O′ , which
maps a cardinality value w to a set of objects having exactly w
keywords, namely HT O′ [w] (Line 8). For each o ∈ HT O′ [w],
we maintain the polar-tree with respect to o on the NNs of o,
denoted by PT o (Lines 9 and 14). By means of the virtual
bR∗-tree on O, denoted by bRT O′ , we incrementally retrieve
each onext, namely GetNextNN (Lines 10 and 25).

After onext is retrieved, we insert it into the polar-tree
being maintained for o. As explained in Section IV-B3, during
each insertion of onext, we also check whether the lune with
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ALGORITHM 2: ScaleLune (O, T )
Input: O := a set of objects, T := a set of query keywords
Output: C := a subset of O whose objects together cover T

1 O′ ← objects relevant to T from inverted lists on O while
removing irrelevant keywords from o.τ for each o ∈ O′;

2 bRT O′ ← build the virtual bR∗-tree on O′;
3 HT O′ ← build a hash table on O′;
4 Csc ← GreedySetCover (O′, T ); kLB ← max{2, |Csc|};
5 Cmck ←GreedyMCK (O′, T ); rLB ← 1

2
· diameter of Cmck;

6 fmin ← min{f(Csc), f(Cmck)}; C ← ∅;
7 for w ← maxo∈O′ |o.τ | to 1 do
8 foreach o ∈ HT O′ [w] do
9 PT o ← create the polar-tree w.r.t. o;

10 onext ← bRT O′ .GetNextNN (o);
11 while dist(o, onext) <

fmin
kLB−1

do
12 if d |T |

w
− 1e · rLB ≥ fmin then

13 return C;

14 isCovering ← PT o.Insert(onext);
15 if |onext.τ | > w then continue ;
16 if isCovering 6= false then
17 L(o, onext)← PT o.RangeSearch (onext);
18 if isCovering = uncertain then
19 isCovering ← check if L(o, onext) covers T ;

20 if isCovering = true then
21 X ← GreedySetCover (L(o1, o2), T );
22 if f(X) < fmin then
23 fmin ← f(X);
24 C ← X;

25 onext ← bRT O′ .GetNextNN (o);

26 return C;

respect to o and onext covers T or not, and the answer is
returned from the insertion function and stored in variable
isCovering (Line 14). Also, according to our cardinality
pruning scheme, we skip onext if |onext.τ | is larger than the
current cardinality value being considered (i.e., w) (Line 15).
The variable isCovering can have one of the following values:
true, false, and uncertain. Only if isCovering is not false,
we proceed the next step (Line 16). In both cases of true and
uncertain, it is essential to load all the objects in the lune into
L(o, onext). This retrieval can be done using the polar-tree
as specified in Section IV-B3 (Line 17). After we establish
L(o, onext), we have to check if L(o, onext) covers T when
isCovering = uncertain (Lines 18-19). If L(o, onext) covers
T , we do the same process with L(o, onext) as PolyLune to
get an approximate local solution with respect to L(o, onext)
(Lines 20-24). For each o ∈ HT O′ [w], the incremental NN
retrieval of o is terminated when the next NN being retrieved
is not closer to o than fmin/(kLB−1) according to our spatial
pruning scheme (Lines 12-13).

Finally, at any time during the entire process, when the
cardinality pruning condition in Lemma 5 is satisfied, we can
immediately stop and return C (Lines 12-13).

1) Theoretical analysis: The correctness and the approxi-
mation bound of PolyLune (i.e., Lemmas 2 and 3, and Theo-
rem 4) are still valid for ScaleLune . The cost of ScaleLune is
analyzed as follows.

a) Initialization: (Lines 1-6) Scanning all inverted lists
relevant to T entails O(

∑
t∈T |Ot|) time, where Ot is the

set of all objects containing keyword t, due to merging all

the lists relevant to T . The cost of removing all irrelevant
keywords is O(

∑
o∈O′ |o.τ ∩T |) as clarified in Section IV-B1,

which is in fact identical to O(
∑
t∈T |Ot|). Also, the cost

of building the virtual bR∗-tree and that of building the
hash table are O(|O′| log |O′|) and O(|O′|), respectively.
GreedySetCover on O′ entails O(

∑
o∈O′ |o.τ ∩T |) time using

the fastest SET-COVER algorithm by Cormode et al. [24].
Finally, GreedyMCK requires O(|T | · mint∈T |Ot| · g(|O′|))
time [7], where g(|O′|) is the cost of each retrieval of NNs
using keywords. Hence, the total cost of the initialization can
be summarized as

O

(∑

t∈T
|Ot|+ |O′| log |O′|+ g(|O′|)|T |min

t∈T
|Ot|

)
(2)

b) The Main Part: (Lines 7-25) Let O′′ ⊆ O′ be
the set of objects that cannot be pruned by our cardinality
pruning scheme. Then, the entire cost of the main part is
|O′′| times the cost of processing each o ∈ HT O′ [w]. For
each o ∈ HT O′ [w], let No be the set of NNs of o to be
retrieved. Then, No contains all NNs of o that are not pruned
by our spatial pruning scheme. The cost can be represented as
O(y(|O′|)∑o∈O′′ |No|+

∑
o∈O′′ h(o)|No|), where y(|O′|) is

the cost of each retrieval of NNs that is theoretically achieved
as O(log |O′|) [26], and h(o) is the total cost of additional
tasks for each NN of o. For each NN of o, say onext, we
need to insert onext into the polar-tree, perform a range search
on the polar-tree, and occasionally invoke GreedySetCover
on L(o, onext). The cost of an insertion of the polar-tree is
O(log |No|) that is also the cost of a range search because
the polar-tree is just a binary search tree on 1D values (i.e.,
angles). To preserve the balance, the polar-tree is implemented
as a red-black tree.GreedySetCover on each lune is performed
only when the lune covers T . Let N ′o be the set of NNs of o
such that the lune with respect to o and each onext ∈ N ′o
covers T . Then, the cost of processing GreedySetCover is
O(
∑
o′∈N ′o |o

′.τ ∩ T |). Since O(log |No|) is dominated by
O(y(|O′|)) ≈ O(log |O′|), the cost of the main part can finally
be represented as

O


log |O′|

∑

o∈O′′
|No|+

∑

o∈O′′

∑

o′∈N ′o

|o′.τ ∩ T |


 (3)

The cost in Equation 3 can be regarded as the total cost
of ScaleLune in practice, since it is most likely to dominate
the cost in Equation 2. This cost is much lower than the
cost in Theorem 3 in the sense that, in practice, more often
|N ′o| < |No| < |O′′| � |O′|. Not only that, theoretically
ScaleLune is an output-sensitive algorithm since its entire cost
highly depends on how many combinations of objects cover T .
Actually, when there are not many groups of objects covering
T , then |N ′o| � |No|, which means the cost in Equation 3 is
close to O(log |O′|∑o∈O′′ |No|).

D. Extension to Sum of Pairwise Distances as the Cost Func-
tion

Our algorithms can also be applied to the situation where
the sum of all pairwise distances is used as the cost function,
that is,

f(C) =

(|C|
2

)
· max
o,o′∈C

dist(o, o′) (4)
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TABLE I. THE STATISTICS OF THE REAL DATASETS

Dataset UK FSQ
Number of objects 179,491 512,590
Avg. # keywords/object 6.50 4.69
Number of unique keywords 117,305 166,909

Only a small change in both PolyLune and ScaleLune is
needed. For both PolyLune and ScaleLune , we can just use the
cost function in Equation 4 in Lines 8 and 9 in Algorithm 1 and
Lines 22 and 23 in Algorithm 2. In addition, for ScaleLune ,
we need to change all the parts related to our pruning rules
such as replacing kLB − 1 by

(
kLB

2

)
and replacing d |T |w − 1e

by
(d |T |w e

2

)
.

It is easy to see that these changes in our algorithms
do not impair their correctness and complexity, but their
approximation bounds are adjusted as follows.

Theorem 5: The PolyLune (or ScaleLune) algorithm re-
turns an O(log2 |T |)-approximate answer for SK-COVER with
respect to the distance cost function in Equation 4.

Proof: Let C∗ be the optimal group and Ĉ be the group
returned by PolyLune (or ScaleLune). Similar to the proof of
Lemma 3, we have:

f(Ĉ) ≤ f(X∗) ≤
√
3 · r∗ ·

(|X∗|
2

)

≤
√
3 · (ln |T |+ 1)2 · |C

∗|
|C∗| − 1

· r∗ ·
(|C∗|

2

)

= O(log2 |T |) · f(C∗)

Similarly, we can obtain that the straightforward adap-
tations from solutions for mCK or SET-COVER that are
explained in Section III-C now have an O(|T |2)-approximation
bound for this distance cost function. The gap between the
bounds of the adapted algorithms and ours in this case is
even bigger than that when Equation 1 is used, since |T |

log |T | ≤
( |T |log |T | )

2.

V. EXPERIMENTS
In this section, we report experimental results on the

effectiveness and efficiency of our methods, and also compare
with the baseline methods.

A. Setup
1) Datasets: Our experiments were conducted on two real

datasets, whose statistics are shown in Table I. Dataset UK1 is
the set of POIs (e.g., hospital, supermarket, park, etc.) of the
United Kingdom, where each POI is augmented with a simple
textual description. It consists of about 0.2 million POIs and
one million words. Dataset FSQ is a set of 0.5 million venues in
New York crawled from Foursquare2. Each venue is associated
with a GPS location and contains some textual attributes such
as its name and category. For both real datasets, we normalized
all the spatial coordinates to range [0, 1].

2) Queries: To construct queries in our experiments, we
consider the following factors. First, we vary the number
of query keywords (i.e., |T |) from 2 to 20 (10 by default).
Also, we consider the keyword frequency rate, that is, the
percentage of objects containing a keyword in the dataset (i.e.,

1http://www.pocketgpsworld.com
2https://foursquare.com

TABLE II. THE PARAMETERS USED TO GENERATE QUERIES IN THE
EXPERIMENTS

Parameter Values (default value)
|T | 2, 4, 6, 8, (10), 12, 14, 16, 18, 20

mint∈T
|Ot|
|O| 0.0025, 0.05, (0.01), 0.02, 0.04

|Ot|
|O| , where Ot is the set of objects containing keyword t).

The maximum keyword frequency rates in both datasets are
around 0.1. Therefore, we vary the minimum frequency rate for
query keywords from 0.0025 to 0.04. Among all the keywords
passing the frequency rate threshold, we randomly choose |T |
keywords evenly to form a query.

Table II shows the parameter settings used in generating
the queries in our experiments. For each configuration, we
randomly produced 50 queries and report the average results.

3) Algorithms: We implemented the following algorithms
and compared their performance in terms of the approximation
quality and the efficiency.
• GKG [7] - This is a greedy 2-approximation algorithm for
mCK.

• SKECa+ [7] - This is a state-of-the-art approximation
algorithm for mCK, which turns out to be slower than
GKG but gives a more accurate answer. This algorithm
basically finds the smallest enclosing circle covering all
the query keywords. We use the same default parameter
configuration as [7].

• GreedyMinSK - This algorithm adapts GreedySetCover
to solve SK-COVER as explained in Section III-C. It
first selects an object containing the maximum number of
query keywords as the starting point. Iteratively it chooses
the next object in a greedy manner considering both the
covering power and the incurred distance. Since there
can be multiple objects equally containing the maximum
number of query keywords, we do the same process starting
with each of them and choose the resulting set with the
minimum cost.

• PolyLune - This is our polynomial time approximation
algorithm presented in Section IV-A without using any
pruning techniques and the polar-tree.

• 2DLune - This algorithm employs all our pruning tech-
niques presented in Section IV-B2 but not the polar-tree. It
performs a 2D range search on the virtual bR∗-tree to test
and process each lune.

• ScaleLune - This is our ultimate approximation algorithm
employing all the techniques including the polar-tree.
Indeed, the algorithms for mCK do not return a compact

set of objects because they do not consider the cardinality of
the resulting set. For instance, SKECa+ sometimes returns a
huge set containing even a lot more than |T | objects. Therefore,
for a more reasonable comparison, we gave all alternative al-
gorithms an additional advantage by running GreedySetCover
on the resulting set, and thereby the answer set can contain at
most |T | objects.

4) Experimental Environment: We implemented all algo-
rithms in Java, and conducted all experiments on a PC running
Linux (CentOS 6.7) equipped with Intel Core i7 CPU 3.6GHz
and 16GB memory.

B. Accuracy
To evaluate the accuracy of each algorithm, we compare

the distance costs of the answers returned from all the algo-
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Fig. 7. Quality of the answer set using UK with respect to the number of query keywords (|T |)
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Fig. 8. Quality of the answer set using FSQ with respect to the number of query keywords (|T |)
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Fig. 9. Quality of the answer set using UK with respect to the frequency of query keywords (|Ot|/|O|)
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Fig. 10. Quality of the answer set using FSQ with respect to the frequency of query keywords (|Ot|/|O|)

rithms. Since SK-COVER is even harder than SET-COVER,
it is impractical to obtain the exact answer for SK-COVER.
Therefore, we use the results from 2DLune as the benchmark
and calculate the relative cost, including relative diameter and
relative cardinality of the answer sets, for the results returned
from the other algorithms.

For the sake of simplicity, we only report the results from
our algorithms optimizing distance cost using Equation 1, but
also report the distance cost of those results against Equation 4.
When evaluating using cost function Equation 4, it is a clear
handicap to our methods. Interestingly, our algorithms still
surpass the other competitors with a clear margin.

1) Effect of the Number of Query Keywords: Figures 7
and 8 show the relative costs with respect to cost function
Equations 1 and 4, respectively, as well as the relative diameter
and the relative cardinality with respect to the number of
query keywords (i.e., |T |). On both datasets, we observe that
2DLune and ScaleLune always achieve the best accuracy and
their results are almost the same. Our GreedyMinSK algorithm

returns the most inaccurate results whose cost is at least
several times larger than those from 2DLune and ScaleLune .
GreedyMinSK tends to focus on minimizing the cardinality
rather than the diameter as shown in Figures 7(d) and 8(d).
SKECa+ always returns the groups with a smallest diameter,
which leads to a better accuracy than GKG . However, in terms
of the cost in both Equations 1 and 4, SKECa+ is always
less accurate than ScaleLune because the cardinality of the
resulting group (i.e., |C|) is always larger than those from
ScaleLune .

The gaps in accuracy between ScaleLune and the oth-
ers become larger when |T | increases, which is consistent
with the fact that GKG and SKECa+ can result in O(|T |)-
approximation in the worst case. Also, the gaps become even
lager when Equation 4 is used, as analyzed in Section IV-D.

2) Effect of the Frequency of Query Keywords: Figures 9
and 10 show the experimental results with respect to the
minimum frequency rate of query keywords (i.e., mint∈T

|Ot|
|O| ).

For the FSQ dataset, we ignored the frequency rate of 0.4
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Fig. 11. The actual distance cost of the answer set with respect to the number of query keywords (|T |)
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Fig. 12. The actual distance cost of the answer set with respect to the frequency of query keywords (|Ot|/|O|)

since only one query was possible with the frequency rate
of 0.4. Similar to Figures 7 and 8, the overall accuracy of
2DLune and ScaleLune is the best among all competitors.
It again confirms that GreedyMinSK pursues the minimum
cardinality while GKG and SKECa+ attempt to minimize the
diameter. ScaleLune achieves a good placement between these
two objectives. One interesting observation is that GKG gets
better with higher frequency rates. This is probably because
GKG has to check many candidate sets when the smallest
frequency is large and this leads to a better accuracy.

3) Effectiveness of the Cost Functions: Even though our
algorithms are the best with respect to the cost functions in
SK-COVER, we still want to investigate how effective they
are in reducing the actual distance costs. We report the actual
distance costs of all the retrieved groups in both Equations 1
and 4 in Figures 11 and 12. For the actual cost in Equation 1,
we compute the sum of the distances from one object to
the others and report the worst case. For the actual cost in
Equation 4, we sum up all pairwise distances in the group.

Once again, 2DLune and ScaleLune achieve the minimum
distance cost in almost every case and GreedyMinSK is
dramatically worse than the others.

Interestingly, in this experiment, the gap between SKECa+
and GKG using Equation 4 gets much smaller than that
using Equation 1. This is because the cardinality of answers
returned by SKECa+ is almost the same as that by GKG . The
results indicate that the cardinality is a more important factor
than the diameter to determine the actual cost in Equation 4.
By minimizing the cardinality as well as the diameter, our
algorithms almost always return the group of the smallest
distance cost in both Equation 1 and Equation 4.

C. Efficiency
In order to evaluate the efficiency of our algorithms, we

compare the execution time of all the algorithms.
1) Overall Efficiency: The overall efficiency of our algo-

rithms is shown in Figure 13. The algorithms based on a
greedy scheme, GKG and GreedyMinSK , run faster than the
other algorithms. GreedyMinSK is always the fastest probably
because of sacrificing the accuracy a lot. GKG is also fast

when the keyword frequency rate is low. However, its running
time increases as the frequency rate increases, and becomes
even slower than 2DLune and ScaleLune . This is due to
the fact that the more objects having the most infrequent
keyword, the more candidate sets GKG needs to consider.
ScaleLune is always faster than 2DLune , and comparable with
SKECa+. This is somewhat surprising in that SKECa+ is
actually intended for mCK that turns out to be computationally
easier than SK-COVER.

2) Effectiveness of the Pruning Techniques: To study the
pruning power of our techniques presented in Section IV-B2,
we compare the execution times of PolyLune and ScaleLune .
Unfortunately, PolyLune is way too slow to process the real
datasets. Therefore, we have to use a sample of 10, 000 objects
from the UK dataset, denoted by TinyUK. Figure 14 shows the
execution time of PolyLune , 2DLune , and ScaleLune on the
TinyUK dataset. Clearly, our pruning techniques substantially
reduce the search space. There is a huge performance gap
between PolyLune and ScaleLune .

3) Effectiveness of the Polar-tree: Figure 15 shows the
speedup of ScaleLune over 2DLune . Note that both algorithms
consider the same number of pairs that are not pruned by our
pruning techniques. The only difference is how to test whether
a lune covers T and how to retrieve all the objects in the
lune. We obtain speedup values of 1.9 and 1.3 on average (4.7
and 1.6 at most) on the datasets UK and FSQ, respectively.
Also, the performance gain of ScaleLune becomes larger
when the frequency of query keywords gets smaller or more
query keywords need to be covered. This is because there are
less groups covering T in those cases, and the early test on
covering T in ScaleLune can successfully avoid the overhead
of retrieving all the objects in checking the corresponding lune.
This is also consistent with the output-sensitive characteristic
of ScaleLune as analyzed in Section IV-C.

VI. CONCLUSIONS
In this paper, motivated by the observation that mCK may

not capture the information need in some application scenarios,
we propose the SK-COVER problem. Theoretically, we prove
the NP-hardness and the approximability of SK-COVER, and
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Fig. 13. Overall efficiency test with respect to the number of query keywords (|T |) and the frequency of query keywords (|Ot|/|O|)
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Fig. 14. Efficiency test on PolyLune and ScaleLune
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Fig. 15. Speedup of ScaleLune using the polar-tree

develop a polynomial time O(log |T |)-approximation algo-
rithm, which is the optimal in terms of the approximability.
Practically, we devise two pruning schemes to reduce the
search space, and propose a polar-tree structure to improve
the efficiency of processing pairs of objects. According to our
extensive experimental results, our algorithms achieve the best
accuracy and a competent efficiency comparable to a state-
of-the-art mCK query processing algorithm. As future work,
it is interesting to devise an exact and practically feasible
algorithm for SK-COVER even though it could be a tough
challenge. Moreover, it is desirable to consider more distance
cost functions addressing different needs in applications.
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