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A B S T R A C T

The volume of spatio-textual data is drastically increasing in these days, and this makes more and more
essential to process such a large-scale spatio-textual dataset. Even though numerous works have been studied
for answering various kinds of spatio-textual queries, the analyzing method for spatio-textual data has rarely
been considered so far. Motivated by this, this paper proposes a k-means based clustering algorithm specialized
for a massive spatio-textual data. One of the strong points of the k-means algorithm lies in its efficiency and
scalability, implying that it is appropriate for a large-scale data. However, it is challenging to apply the normal
k-means algorithm to spatio-textual data, since each spatio-textual object has non-numeric attributes, that is,
textual dimension, as well as numeric attributes, that is, spatial dimension. We address this problem by using
the expected distance between a random pair of objects rather than constructing actual centroid of each cluster.
Based on our experimental results, we show that the clustering quality of our algorithm is comparable to those
of other k-partitioning algorithms that can process spatio-textual data, and its efficiency is superior to those
competitors.

1. Introduction

Nowadays, spatio-textual objects are prevalent with the fact that
user created contents are mainly uploaded and created by mobile
subscribers. For example, in Twitter1, average number of tweets sent
per day is about 500 million, and the 76% of Twitter users are mobile
subscribers. Similarly in Foursquare2, the number of check-ins, each
of which consist of a location and some textual descriptions, is
known to be millions more every day. Thus, the volume of spatio-
textual data is already huge, and even grows in an extremely fast
manner.

With this background, there have been extensive works on proces-
sing spatio-textual data in the last several years [1–5]. Most of them
have highly concentrated on “how to process spatio-textual queries”,
namely spatial keyword search. In other words, their goal is commonly
to find the object(s) satisfying some spatial and textual conditions while
trying to minimize the query processing cost. However, it is also

important to analyze the spatio-textual data at a high-level, and
unfortunately none of the works above are intended for data analysis.

In this paper, we study a problem of clustering spatio-textual data
motivated by the fact that clustering is one of the most fundamental
tool in data analysis. In particular, we focus on extending the k-means
algorithm for a massive volume of spatio-textual dataset to be
efficiently processed. k-means still remains one of the most popular
data processing algorithm over half a century especially due to its
simplicity and scalability [6]. To the best of our knowledge, this is the
first work on applying the k-means clustering algorithm to spatio-
textual data.

Not to mention that clustering itself is a central problem in
computer science, spatio-textual clustering can play a key role in many
practical applications as follows:

• Social media data analysis. With the rise of social media
platforms such as Twitter and Facebook, the importance of extract-
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ing interesting patterns from the large amount of social media data
is getting more and more increasing. As mentioned earlier, a large
portion of such social media data is generated by mobile users, and
therefore has location information as well as textual information.
Thus, by finding spatio-textual clusters, we can reveal some under-
lying characteristics of social media.

• Data cleaning in location-based systems. Spatio-textual ob-
jects are also generated from various location-based services such as
Foursquare. In many cases, some duplicated objects can be created
by different users even if those objects are semantically the same.
For example, the dataset containing venue information in
Foursquare might have “Domino Pizza”, “Domino's Pizza”, and
“Pizza Store” in a neighborhood even though they actually represent
the identical place. Spatio-textual clustering can help to eliminate
such duplicate venues by merging venues in the same cluster into
one representative.

• Preprocessing for spatial keyword queries. Spatio-textual
clustering can also be utilized as a preprocessing phase in spatial
keyword search. Many spatial keyword query processing algorithms
exploit underlying preprocessed structure such as the R-tree based
index. Basically, in such a preprocessed index, it is more beneficial to
gather spatially and textually similar objects into the same entry.
This can be guided by utilizing the preliminary spatio-textual cluster
information.

There are a rich body of works on the k-means algorithm in the
literature, which produce a variety of derivatives. Since the key
process of k-means is to compute and update the mean value of each
cluster, most k-means family algorithms assume that each data object
only contains numeric attributes. This assumption makes a big
challenge in applying the k-means algorithm to spatio-textual data
as each object contains both numeric (spatial) and non-numeric
(textual) attributes.

To address the challenge above, we first observe that it suffices to
compute the expected distance between a random object in each cluster
and the object under consideration rather than measuring the distance
from the virtually constructed spatio-textual centroid of a cluster. By
doing so, we can reduce the cost of computing pairwise textual
distances. Furthermore, we devise an effective technique for initializing
k-means for spatio-textual data, which is commonly the most impor-
tant and challenging task for k-means derivatives to improve not only
the quality of resulting clusters but also the efficiency.

Our main contribution is summarized as follows:

• We firstly investigate the problem of clustering a large scale spatio-
textual data. Spatio-textual clustering has many real applications
such as social media data analysis, location-based data cleaning, and
preprocessing of spatial keyword querying.

• We propose a modified version of the k-means clustering algorithm
specialized for spatio-textual data. Our solution utilizes the expected
pairwise distance and includes an effective initialization technique.

• We provide extensive experimental results using various real
datasets. The experimental results show that our proposed algo-
rithm is not only fast enough to tackle a massive spatio-textual
dataset, but also fairly effective compared with the existing cluster-
ing algorithms that can process spatio-textual data without any
modification yet requires a long running time.

1.1. Organization

The paper is organized as follows: Section 2 describes the related
work on spatio-textual clustering. Section 3 formally defines the
problem of clustering spatio-textual data. Section 4 presents our k-
means based clustering algorithm, which is experimentally evaluated
in Section 5. Lastly, Section 6 concludes the paper with a concluding
remark.

2. Related work

Spatio-textual similarity search. The goal of our problem is
basically to find the groups of objects that are spatially and textually
similar to each other. Therefore, one of the most related categories of
existing works is the spatio-textual similarity search, which aims at
finding the closest object to the query object in terms of both spatial
distance and textual relevance. There are a number of works on this
topic that have been proposed [1–5] in the last several years. It is far
beyond of this paper to scrutinize all those works. One can refer to the
general survey on the spatial keyword query, which is well organized by
Cao et al. in [7].

As mentioned earlier, all these methods are focused on how to find
one or k nearest objects in terms of spatial and textual aspects. This is
inherently different from our main purpose aiming at finding k spatio-
textual clusters even though we follow the general definition of the
spatio-textual distance in these works.

Spatial clustering. Focusing on spatial data mining, many
clustering algorithms have been developed and widely utilized [8–
13,6,14]. In this type of algorithms, a data object is regarded as a point
in a metric space, and thus it is assumed that each object consists of
only numeric attributes. The most popular clustering algorithms in this
category is undoubtedly k-means [8], which itself has produced
extensive derivative algorithms. Among those numerous variants, the
most commonly used one in practice is the Lloyd's version [9], where
the initial k seed objects are just selected randomly. Some derivatives
[13,6] attempt to overcome the disadvantages of the Lloyd's algorithm
by carefully choosing the initial k objects. Apart from the k-means
family algorithms, there is another kinds of algorithms following the
density-based clustering scheme [11,12,14], which is proposed to
effectively capture the clusters of arbitrary shapes. All the algorithms
above only allow the numeric data, and hence are not directly
applicable to our spatio-textual data.

Another important branch of k-partitioning algorithms is k-
medoids [15,16]. In k-medoids family algorithms, rather than
maintaining k centroids, we determine k representative objects,
called medoids, among the given dataset. One advantage of k-
medoids is that it can be applied to non-numerical data as well as
numerical data since it suffices to define a distance measure between
any two objects regardless of their attribute types. However, k-
medoids and its derivatives suffer from the high time complexity,
which makes it difficult to process a massive spatio-textual data we
are focusing on.

Categorical clustering. Speaking of only the textual aspect of our
problem, it can fall in the literature of the categorical clustering
methods in the sense that the textual information is represented as a
set of keywords and this can be seen as a categorical attributes. Many
algorithms on the categorical data have been devised, which are ROCK
[17], CACTUS [18], COBWEB [19], to name a few. Unfortunately, this
type of algorithms are basically rooted on the hierarchical clustering
scheme where the time complexity cannot be lower than the quadratic
time. Therefore, its computing time will be prohibitively long for a large
spatio-textual dataset.

Mixed data clustering. Compared with spatial clustering algo-
rithms or categorical clustering algorithms, there are only a few works
on clustering mixed numeric and categorical data [20,21]. One of the
most representative algorithms is the k-prototypes algorithm [20].
The k-prototypes can be used to perform spatio-textual clustering by
representing the textual dimension of each object as a series of boolean
values, one for one keyword. However, the k-prototypes algorithm
and other clustering algorithms for mixed data share the strict
assumption that every object has the same number of categorical
attributes. This means, in spatio-textual data, the textual dimension-
ality of each object becomes extremely high, and therefore mixed data
clustering algorithms including k-prototypes cannot efficiently work
with a massive dataset.
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3. Problem formulation

This section formally defines the problem environment and clarifies
the goal of the paper.

Our problem environment follows the many works in the literature
of spatio-textual similarity search [22,4,23], which is summarized as
follows:

• We consider a set of spatio-textual objects, denoted by
O o o o= { , ,…, }O1 2 | | .

• Each object o O∈ consists of two attributes, namely loc τ< , >, where
loc is a geographic location and τ t t t= { , ,…, }τ1 2 | | is a set of keywords.

• Each keyword t o τ∈ . is associated with a weight w(t), which
represents the significance of the keyword and is global for all
objects. The most widely used value for the keyword weight is the
inverted document frequency (idf).

• The distance between two spatio-textual objects o1 and o2 is defined
as:

Dist o o α DistS o o α DistT o o( , ) = · ( , ) + (1 − )· ( , ),1 2 1 2 1 2

where α is a user parameter to adjust the importance of spatial
dimension or textual dimension, DistS (*, *) is the Euclidean distance
between o loc.1 and o loc.2 , and DistS (*, *) is the weighted Jaccard
distance between o τ.1 and o τ.2 defined as follows:

w t

w t
1 −

∑ ( )

∑ ( )
.t o τ o τ

t o τ o τ

∈ . ∩ .

∈ . ∪ .

1 2

1 2

Note that α is not a parameter to be optimized in advance, but rather it
represents a user's intention on whether s/he is interested in the spatial
aspect or the textual aspect of the underlying dataset.

Then our problem is formally defined as follows:

Definition 1. Given O, DistS (*, *), and a positive integer k, partition O
into k disjoint clusters such that the total intra cluster distance is
minimized and the total inter cluster distance is maximized with
respect to DistS (*, *).

4. Spatio-textual K-means clustering

This section first introduces the basic flow of k-means as it is also
the underlying clustering scheme of our algorithm, and then presents
our proposed clustering algorithm that addresses the difficulty in
applying k-means to spatio-textual data.

4.1. K-means

Let us first examine the k-means algorithm. k-means is basically
the iterative process of finding k optimal centroids that minimize the
sum of squared Euclidean distances between all objects and their
closest centroid. At a high level, the process of k-means is summarized
as Algorithm 1.

Algorithm 1. K-MEANS(O k DistS, , (*, *)).

Input O≔ a set of objects, k≔ the number of clusters, DistS (*, *)≔ a
distance measure between two objects

Output ≔ a set of k disjoint clusters of O
1 Choose k initial centroids;
2 repeat





DistS3
4

← Assignment of all the objects to the closest centroid based on (*
, *);

Update the centroid of each cluster based on ;

5 no change in ;
6 return 

In finding spatio-textual clusters, the major difficulty of the above
k-means algorithm lies in updating centroids. Thus, it is not intuitive to
virtually create spatio-textual centroids since k-means basically as-
sumes that every attribute is numeric while the textual dimension is
defined as a set of keywords. Even though there can be several ways of
converting such a set of keywords to a numeric value such as the term
frequency vector, they commonly suffer from the sparse and high
dimensional representation. In other words, the total number of
keywords in the entire dataset must be huge, but each object contains
only a small number of keywords compared with the entire set of
keywords.

Unfortunately, a similar problem occurs when using the set
representation for each textual centroid. When the cluster size grows,
the number of keywords in the centroid unavoidably increases as the
centroid should somehow contain the textual information for all the
keywords in its corresponding cluster. This phenomenon is widely
called “ripple effect”, and known to make both the efficiency and
quality of clustering worse [17].

Our solution remedies the above difficulty by removing virtual
centroids in the process of k-means clustering. Instead, we utilize the
expected distance between a random pair of objects. Our intuition is
that the centroid is ultimately intended for finding the closest spatio-
textual cluster for each object, and it suffices for this task to compute
the expected distance of a random object in each cluster from the object
under consideration.

Therefore, the overall flow of our query processing algorithm can be
expressed as a more general version of Algorithm 1, which consists of
the following three components:

1. Initialization (Line 1)
2. Assignment (Line 3)
3. Update (Line 4)

4.2. Expected distance based K-means

In this section, we propose our modified version of k-means
algorithm for spatio-textual data by presenting our methods tackling
each of the aforementioned steps.

4.2.1. Initialization
One of the most important issues in k-means family algorithms is

how to choose initial k seeds. This is especially because that it is known
that the quality and performance of k-means clusters are highly
sensitive to the first k seeds [13]. The most straightforward approach
is to choose arbitrarily k random seeds, but it turns out that it is the
weakest point of the conventional k-means algorithm. Several attempts
are proposed to more wisely choose k initial individual objects [13,6].
However, it is not a very good approach for spatio-textual data to use k
individual objects as the initial status, especially due to the character-
istics of the textual dimension. It is very common in textual dimension
that only a few keywords are shared by different objects. Therefore,
individual object cannot effectively represent other objects that can be
combined into the same cluster.

For the initialization process, our approach is to choose k groups of
objects, instead of k objects, as the initial k clusters. Of course, such k
groups are regarded as small subsets of final k clusters. Thus, the
objects in each group should be similar to each other textually as well
as spatially.

To find such k spatio-textual mini-clusters, we utilize a grid-based
space partitioning scheme and consider the textual cohesion of each
cell. The underlying idea is that the objects residing in a cell can be seen
already spatially close to the others in the same cell, and therefore it

D.-W. Choi, C.-W. Chung Information Systems 64 (2017) 1–11

3



suffices to estimate their textual cohesion. However, a grid-based
method has the following drawbacks as usual. First of all, the number
of objects in each cell can be dramatically different, depending on how
data points are distributed in space. In a statistical point of view, cell
with only a few points cannot be regarded as equally significant as
those with many points. The other problem is that it is not easy to
accordingly adjust the length of each cell.

To overcome these drawbacks, we employ the partitioning scheme
adapted from a quadtree [24], where the whole space is recursively
split into four equal-sized quadrants. Basically, we divide the entire
set of objects into four subsets in such a way that all the objects in
each subset reside in one of four quadrants, and we do the same
division process recursively for each subset. This process continues
until each quadrant has at most a given number, called the cell
capacity, of objects. We consider only those quadrants within the cell
capacity to be the cells in a multi-granularity grid structure. By
doing so, each cell has a similar number of objects even though their
lengths will not be the same. Also, we no longer have to adjust the cell
length.

If the textual cohesion of a cell is high enough compared to its cell
length, we can think that the cell is one of the spatio-textual mini-
clusters. The textual cohesion of each cell is defined as follows:

Definition 2. (Textual Cohesion) Let C be a cell. Then the textual
cohesion of C is defined as the expected textual distance between a
random pair of objects in C.Now we have to examine how to compute
the expected textual distance between a random pair of objects in C.
Instead of computing the exact expected textual distance, we use the
estimation of the expected textual distance by employing the keyword
frequency statistics of each cell. To this end, we maintain for each cell a
hash table consisting of pairs of a keyword and its frequency in the cell,
namely t n t< , ( )>i C i , where n t( )C i is the number of occurrences of
keyword ti in C.

Then the expected textual distance between a random pair of
objects o and o′ is formally represented as:

E DistT o o E
w t
w t

[ ( , ′)] = 1 −
∑ ( )
∑ ( )

t o τ o τ

t o τ o τ

∈ . ∩ ′.

∈ . ∪ ′.

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (1)

To estimate (1), let us first use L to denote the total weight of
keywords of a random object o C∈ , which is:

∑L w t= ( )
t o τ∈ . (2)

Let WC be the entire set of keywords in C, i.e., o τ⋃ .o C∈ . Then the
expectation of L can be derived as:

∑E L w t Pr t o τ[ ] = ( )· ( ∈ . ),
t W∈ C (3)

where Pr t o τ( ∈ . ) is the probability for the occurrence of t in the
textual dimension of o. Based on the hash table maintained by each
cell, we use n t C( )/| |C for Pr t o τ( ∈ . ). It is worth noting that the value of
E L[ ] can be easily computed by scanning C once.

We consider another random variable M that denotes the total
weight of common keywords of a random pair of objects o C∈ and
o C′ ∈ , which is:

∑M w t= ( )
t o τ o τ∈ . ∩ ′. (4)

Similarly we have:

∑ ∑E M w t Pr t o τ o τ w t Pr t o τ Pr t o τ

t o τ

[ ] = ( )· ( ∈ . ∩ ′. ) ( )· ( ∈ . )· ( ∈ ′.

| ∈ . ).

t W t W∈ ∈C C

Similar to Pr t o τ( ∈ . ), Pr t o τ t o τ( ∈ ′. | ∈ . ) can be defined, by using the
hash table of keyword frequencies, as n t C( ( ) − 1)/(| | − 1)C , which is the
probability of having t without replacement. Also, E M[ ] can be
obtained by the linear scan of C.

Then (1) can be estimated as:

E M
L M

E M
E L E M

E DistT o o1 −
2 −

≈ 1 − [ ]
2 [ ] − [ ]

= [ ( , ′)]
⎡
⎣⎢

⎤
⎦⎥ (5)

As specified in (5), we use E DistT o o[ ( , ′)] to denote the estimation of
the textual distance between a random pair of objects o and o′.
Considering the maximum spatial distance together with the textual
cohesion, we choose top k cells with the highest
α celldiameter α E DistT o o· + (1 − )· [ ( , ′)] values, and this sets of objects,
one set for one cell, will be in charge of initial k mini-clusters.

The entire process of division step can be run in O O O(| | log | |) time
since only linear scan of O is required for each quadrant split, and the
number of splits is O O(log | |).

Analysis on estimation error. Theoretically, the derivation of
E DistT o o[ ( , ′)] in (5) is not guaranteed to be 100% accurate in all cases
in the sense that L and M may not be independent. However,

Fig. 1. Estimation error on textual cohesion. (a) UK (b) FSQNY.
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heuristically we observed the fact that our estimation is accurate
enough in practice especially when the cell capacity is not very large.
Fig. 1 shows the average relative error ratio between E DistT o o[ ( , ′)]
and E DistT o o[ ( , ′)] over the set of all cells partitioning two real datasets
namely UK and FSQNY (to be explained in Section 5.1), when varying
the cell capacity. Overall, the relative error linearly increases as the cell
capacity increases.

Furthermore, note that our aim of estimating the textual cohesion is
not to obtain exact values themselves, but to find out which cell is
textually tighter than the others. Thus, it sufficies to obtain the same
ordering on cells by using our estimation as the ordering obtained by
the exact textual cohesion. In order to evaluate this, we use the
normalized kendall tau distance that is a metric for comparing two
ranking lists, where the distance values indicates the ratio of discordant
pairs between two lists. We consider top-50 textually tightest cells for
both of ordering lists, and measure the kendall tau distance between
two lists in a way presented in [25]. As shown in Fig. 1, the kendall tau
distance value stays always 0 even though its corresponding relative
error gets higher as the cell capacity increases. It implies that, for the
purpose of picking up top k initial seeds, our estimation does its job
fairly well.

4.2.2. Assignment
Based on the initial k mini-clusters, we now have to assign all other

objects to their closest cluster. Instead of finding the closest centroid in
the normal k-means algorithm, our algorithm finds the cluster whose
expected distance between a random object in the cluster and the
object to be assigned is minimum.

Once again, we use the estimation of the expected distance rather
than the exact value that can be obtained by averaging all distances of
objects in the cluster from the object being assigned.

Since our distance metric consists of a spatial part and a textual
part, we need to estimate each of them individually and combine those
two estimations. Let us first consider estimating the expected textual
distance between a cluster and the object being assigned. The process is
quite similar to estimating the textual cohesion of a cluster. Let q be the
object to be assigned, and let C be a cluster (it was a cell). Then for a
random object o in C, E DistT o q[ ( , )] can be represented as:

E
w t

w t w t w t
1 −

∑ ( )

∑ ( ) + ∑ ( ) − ∑ ( )
t o τ q τ

t o τ t q τ t o τ q τ

∈ . ∩ .

∈ . ∈ . ∈ . ∩ .

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ (6)

The difference of (6) from (1) is that q is not a random object, and
hence w t∑ ( )t q τ∈ . is just a constant. Since w t∑ ( )t o τ∈ . is the same as (2),
denoted by L, all we have to do is estimate the expectation of

w t∑ ( )t o τ q τ∈ . ∩ . . Let Z denote w t∑ ( )t o τ q τ∈ . ∩ . . Then E Z[ ] can be repre-
sented as:

∑E Z w t Pr t o τ[ ] = ( )· ( ∈ . ).
t q τ∈ . (7)

The hash table of C enables, for any term t, that Pr t o τ( ∈ . ) can be
obtained in a constant time, and therefore E Z[ ] can be computed in
O q τ(| . |) time.

Note that since we do not use any textual centroid, we can reduce
the cost of calculating distances between the object being assigned and
the textual centroid that can be very long for a large-sized cluster.

By (7), we finally estimate (6) as follows:

E Z
L w t Z

E Z
E L w t E Z

E DistT o q

1 −
+ ∑ ( ) −

≈ 1 − [ ]
[ ] + ∑ ( ) − [ ]

= [ ( , )]

t q τ t q τ∈ . ∈ .

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

(8)

In order to estimate the expected spatial distance, namely
E DistS o q[ ( , )], we simply use the spatial centroid as follows:

E DistS o q E o loc x q loc x o loc y q loc y

E o loc x q loc x E o loc y q loc y

E DistS o q

[ ( , )] = [ ( . . − . . ) + ( . . − . . ) ]

≈ ( [ . . ] − . . ) + ( [ . . ] − . . ) ]

= [ ( , )]

2 2

2 2

(9)

Note that this is exactly the same as we do in the normal k-means
algorithm.

By combining (8) and (9) using α, we can finally define the distance
between a cluster C and the object q to be assigned as follows:

Dist C q α E Dist S o q α E DistT o q( , ) = · [ ^ ( , )] + (1 − )· [ ( , )]

For each object q, we assign q to the cluster C with the smallest
Dist C q( , ) among k clusters.

4.2.3. Update
In the normal k-means algorithm, after assigning all the objects, we

re-compute all k centroids for updated k clusters. In our approach, we
adopt an incremental updating scheme to improve the efficiency. For
each cluster C, the information to be updated is summarized as follows:

• The hash table containing all the keywords in C

• The textual cohesion of C

• The spatial centroid of C, namely E o loc[ . ]

The hash table is required for obtaining E Z[ ] as shown in (7). Also, for
both (5) and (8), we should have E L[ ] to be updated. Similarly, E M[ ] is
also essential to compute the textual cohesion. Finally, for (9), we have
to keep E o loc[ . ] as well.

Note that since every assignment can entail updating the above
values, the time complexity of each update should be a constant. It is
obvious to incrementally update the hash table, E L[ ], and E o loc[ . ] in a
constant time. However, updating E M[ ] deserves a bit more explana-
tion.

In our formula, E M[ ] is represented as:

∑

∑

E M w t Pr t o τ Pr t o τ t o τ

w t n t
C

n t
C

[ ] = ( )· ( ∈ . )· ( ∈ ′. | ∈ . )

= ( )· ( )
| |

· ( ) − 1
| | − 1

t W

t W

C C

∈

∈

C

C (10)

Based on (10), we can observe that it suffices to maintain the value of
w t n t n t∑ ( )· ( )·( ( ) − 1)t W C C∈ C

, and thereby (10) can be obtained in a
constant time divided by C C| |·(| | − 1) whenever required. Therefore, for
each term tq of the object q being assigned, we subtract the previous
value for tq, i.e., w t n t n t( )· ( )·( ( ) − 1)q C q C q , and add the updated value,
w t n t n t( )· ( )·( ( ) + 1)q C q C q . This leads to simply adding w t n t2· ( )· ( )q C q for
each arrival of tq. Similarly, whenever an object q is escaped from the
cluster C, we can subtract w t n t2· ( )· ( )q C q for each term tq in q τ. .

It is worth noting that the side benefit of our incremental updating
scheme is that even during the assignment phase, the quality of
clustering is gradually improved. Thus, the up-to-date cluster informa-
tion is likely to help the next object to be assigned to make the better
choice.

4.2.4. Overall algorithm
Combining all detailed processes, we present the overall algorithm

in Algorithm 2. We first divide O spatially into multiple quadrants (i.e.,
cells) and choose k mini-clusters, each of which has the smallest
weighted sum of the textual cohesion and the diameter, in the
initialization phase (Lines 2–10). After that, for each object, we assign
it to the closest cluster in terms of the expected spatio-textual distance
(Lines 12–13). Whenever the assignment task is finished, we accord-
ingly update all the statistics and information for each cluster (Lines
14–17).
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Algorithm 2. EXP-K-MEANS(O k DistS, , (*, *)).

We can prove that Algorithm 2 is always guaranteed to converge as
follows:

Theorem 1. Algorithm 2 terminates after a finite number of
iterations.

Proof. Consider an iterative step. When we re-assign each object to a
new cluster, we choose one with the minimum distance (i.e.,

Dist o Cmin ( , )i k i=1… as defined in Equation (10)). Therefore, the total
distance of all objects from their closest cluster should decrease after
any iteration and can never increase. Since the algorithm stops when
we cannot find any better clustering whose total distance is smaller
than that of the previous one, it is guaranteed to terminate at a
particular state.

Complexity analysis. Now let us analyze the time complexity of
our clustering algorithm. We use N to denote O| | and ℓ to denote the
average number of keywords constituting the textual dimension of an

object in O, i.e., ℓ =
o τ

N
∑ | . |o O∈ . Also, let m denote the number of

iterations.

• Initialization part (Lines 2–10)
In the initial seeding phase, we first divide the entire dataset into

the set of quadrants, which entails O N N( log ) time. Also, we have to
scan the subset corresponding to each cell to construct a keyword
map for the cell, which can be run in total O N(ℓ ) time. Choosing the
initial k cells can be done in O k G( | |), where G| | is the number of cells
in our space partitioning scheme. Usually, G| | is much smaller than
N, and therefore the cost of the initial phase can be determined by
the division step and the construction of the grid-based keyword

map, that is, O N N N( log + ℓ ).
• One iteration part (Lines 11–16)

In the assignment phase (Lines 11–12), each object needs to be
examined to determine which cluster is the closest among k clusters.
This cost is O k( ℓ) (recall that the formula (7) can be calculated in
O o τ(| . |) for any object o O∈ ), and hence the entire cost of the
assignment step is O k N( ℓ ). Thanks to our incremental updating
scheme, the updating task can be done in a piggybacking manner.
This implies that the overall cost of one iteration is dominated by the
cost of the assignment step, that is, O k N( ℓ ).

• Total complexity
The total cost of all iterations isO k Nm( ℓ ), and this dominates the

cost of initial seeding since O N(log ) is not higher than O k m( ℓ ) in
most cases.

Note that this complexity is far lower than those of alternative k-
partitioning algorithms such as k-medoids and k-prototypes. The
time complexity of one iteration of k-medoids is known as
O k N k( ( − ) )2 [16], and it becomes O k N k( ℓ( − ) )2 in our spatio-textual
environment because the cost of calculating the textual distance is
O (ℓ). Therefore, considering the iteration counts, its total complexity
ends up O k N k m( ℓ( − ) )2 , which is a factor of N times higher than that
of our algorithm.

In the case of k-prototypes, the one iteration cost can be
represented as O kLN( ), where L is the average number of unique
keywords in each cluster, since for each object we compute the
distances from k centroids (i.e., prototypes) [20]. Note that L can be
as large as O N(ℓ ) when the cluster size gets large. In those worst cases,
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the running time of k-prototypes is most likely to be close to
O k N m( ℓ )2 , which is also a factor of N times higher than ours.

In summary, our spatio-textual clustering algorithm can theoreti-
cally obtain a O(N) speedup compared with alternative k-partitioning
algorithms.

5. Experiments

In this section, we focus on the following two questions. One is to
experimentally evaluate how much faster our clustering algorithm is
compared with alternative algorithms. The other is to check whether
such a speed-up negatively affects the quality of resulting clusters.
Lastly, with respect to these two questions, we examine the benefits of
our seeding technique exploiting the grid structure compared with the
simple random seeding method.

5.1. Environments

Parameters. There are two important parameters in our problem,
which are k and α. As used throughout the paper, k is the number of
clusters and α is the user parameter to adjust the importance of the
spatial aspect and the textual aspect. The details including default
values are presented in Table 1.

Datasets. To evaluate the performance of our algorithm in
practice, we use two real datasets. The first one is UK3, which is the
set of POIs (e.g., hospital, supermarket, park, etc.) of the United
Kingdom, where each POI is augmented with a simple textual descrip-
tion. It contains about one million words, and its number of unique
words is about 0.1 million.

The other real dataset is FSQNY collected from 0.5 million venues of
Foursquare4 in New York, USA. Its total number of words and total
number of unique words are about 2.4 million and 0.16 million,
respectively. Further details are shown in Table 2.

All the spatial coordinates are normalized for the pairwise spatial
distance to be at most 1 as the pairwise textual distance is in the range
of [0, 1].

For the weight of each keyword t, we adopt the concept of RSJ
(Robertson-Sparck Jones) weight, which was shown to be more
effective than the commonly-used Inverse Document Frequency
(IDF) weights [26]. More specifically, we use the following rough
version of the RSJ weight definition:

w t W f t
f t

( ) = log − ( ) + 0.5
( ) + 0.5

where W is the total number of words and f(t) is the number of
occurrence of the keyword t.

Competitors. We implement the following clustering algorithms
and compare their performances in terms of the efficiency and the
clustering quality:

• PAM [15] - As a baseline algorithm, we use the very first version of
the k-medoids algorithm. In fact, when we say k-medoids, it
usually refers to this algorithm. Despite its simplicity, it is generally
known as not practical due to the high complexity.

• CLARANS [16] - This is a famous clustering algorithm intended to
overcome the high complexity of PAM. The algorithm utilizes a
sampling concept to reduce the running time. Instead of checking all
objects in the neighborhood, it examine only a random sample set of
neighbors. By doing this, CLARANS is generally accepted as the
fastest derivative algorithm from k-medoids. We use the same
experimental parameter value as used in [16] such as the percentage
of neighbors examined being 1.25%.

• KPrototype [20] - As mentioned earlier, this is an extended k-
means algorithm to deal with a mixed dataset where each object
consists of both numeric and categorical attributes. By considering a
set of keywords as a set of categorical values, this algorithm can
handle the spatio-textual data as well. Since it is not reasonable and
sometimes infeasible to regard all infrequent keywords as catego-
rical values, we use only frequent keywords whose frequency is at
least 1% of O| |. The number of those frequent keywords of UK and
FSQNY are presented in Table 2.

• ExpKMeans- This is our proposed algorithm. It takes one para-
meter, namely the cell capacity. As shown in Fig. 1, any value from 0
to 100 would work well for the estimation. We fix the cell capacity to
10 in our experiments.

The main reason behind the selection of these competitors is that they
are considered as the most efficient and scalable ones in their branch of
works, except for PAM. This is also consistent to our main purpose, that
is, developing a scalable and efficient clustering algorithm for massive
spatio-textual datasets prevalent in many location-based systems these
days. Note that we do not use any dimensionality reduction techniques
in the literature of document clustering methods. Those techniques are
transparently applicable to all the competitors as well as our clustering
algorithm.

5.2. Efficiency

In order to evaluate the efficiency of our algorithm, we compare the
execution times of all the algorithms by varying parameter values.

Unfortunately, PAM and KPrototype were way too slow to process
both of our real datasets, and therefore we had to use smaller datasets
to see the overall performance comparison. To this end, we randomly
sample both UK and FSQNY with a probability 1%, and thereby obtain
smaller version of UK and FSQNY datasets roughly having 0.01 times
their original cardinalities. We perform all the algorithms on 10
different samples and take the average of measurements. Figs. 2 and
3 show the results using those samples over two real datasets.

The execution time tends to get longer when k increases. It is
obvious that a larger k increases the execution time as analyzed in
Section 4.2.4. Also, a small α tends to particularly increase the
execution time of KPrototype. This implies that the textual dimen-
sion makes KPrototype more difficult to converge since our imple-
mentation of KPrototype does not deal with infrequent keywords
which many cause some loss of information.

Considering that the execution time is presented in the log scale, we
can see that our algorithm is superior to the other algorithms in terms
of the efficiency. Our algorithm is almost two orders of magnitude
faster than even CLARANS, which is the fastest algorithm among
competitors.

Table 2
The properties of real datasets.

Dataset UK FSQNY

Number of objects 179,491 512,590
Number of words 1,167,018 2,404,029
Number of unique words 117,305 166,909
Number of words with frequency higher than 1% 83 64

Table 1
The values of parameters.

Parameter Values (default value)

Number of clusters (k) 2, 4, (6), 8, 10
Adjusting parameter (α) 0.3, 0.5, (0.7), 0.9

3 http://www.pocketgpsworld.com
4 https://foursquare.com
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5.3. Scalability

In order to test our algorithm in a more scalable environment, we
also conduct experiments using larger samples of real datasets by
comparing only with CLARANS. As shown in Fig. 4, ExpKMeans
achieves much higher scalability than CLARANS. When the sample size
gets larger, the execution time of CLARANS becomes extremely longer
to such an extent that it was not even able to measure the execution
time for the original FSQNY dataset. We can observe that only our
algorithm is scalable enough to process two original real datasets in a
reasonable time.

5.4. Clustering quality

In order to measure the quality of clustering results, we use the
silhouette coefficient, which is widely used especially when the ground
truth of a dataset is not available [27]. For each object o O∈ , its
silhouette coefficient is defined as:

s o b o a o
max a o b o

( ) = ( ) − ( )
{ ( ), ( )}

where a(o) is the average distance between o and all other objects in the
cluster to which o belongs, and b(o) is the minimum average distance

from o to all other objects in clusters to which o does not belong. The
s(o) value is in the range of [−1, 1]. When the value of s(o) gets close to 1,
it means that o is currently assigned to an appropriate cluster.

In order to evaluate the quality of a clustering, we can calculate the
average over all s(o) values of objects in O. Unfortunately, computing
a(o) and b(o) requires a substantial amount of time. Therefore, in our
experiments, we adopt the idea of CLARANS to avoid such a long
evaluating time. Instead of examining all the other objects, we consider
a smaller sample set of objects when computing both a(o) and b(o). For
a sampling parameter, we use 0.1 for sampled datasets, and 0.001 for
original datasets.

Figs. 5 and 6 show the (estimated) average silhouette coefficients of
all objects using 10 different samples of real datasets. The higher the
value, the better the clustering. Overall, the qualities of k-means
derivative algorithms (i.e., KPrototype and ExpKMeans) tend to be
better than those of k-medoids and its variant (i.e., PAM and CLARANS).
This is probably due to the fact that a single median object cannot
effectively represent its cluster because of the sparsity of textual data.

In all the results, our algorithm is almost always at the highest
position together with KPrototype in terms of the clustering quality.
Interestingly, it is observed that KPrototype tends to slightly get
better with a lager α value but slightly get worse with a smaller α value,
particularly compared to ExpKMeans. This implies that KPrototype

Fig. 2. Efficiency test with varying k (sampled). (a) UK (b) FSQNY.

Fig. 3. Efficiency test with varying α (sampled). (a) UK (b) FSQNY.
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more focuses on the spatial dimension rather than the textual dimen-
sion. When α gets close to 1.0, KPrototype will work in almost the
same was as k-means in that the resulting clustering will not be
affected by textual distances even though we cannot still avoid
computing all those textual distances. Based on this, we can conclude
that our clustering scheme is not only efficient but also quite effective to
catch the textual dimension for the clustering.

5.5. Benefit of the grid-based seeding method

In this section, we examine how our grid-based seeding method
(explained in Section 4.2.1) is effective in practice. To this end, we use two
versions of our algorithm; one is with the grid-based seeding technique,
namely Grid seeding, and the other is with the simple random seeding
scheme, namely Random seeding. In order to see how bad Random
seeding could be in the worst case and in the average case, we conduct the
same experiment 10 times and take its best, worst, and average.

Let us first see how the seeding method affects the execution time.
In this series of experiments, we also consider some larger k values as
well as k values used so far. This is because when k becomes large, the
random selection technique is not expected to effectively catch the
underlying k clusters in the first place. We also set the cell capacity here
to 100 for processing our larger real datasets with larger k values.

Fig. 7 shows the elapsed times of Grid seeding and Random

seeding, where the best case and the worst case in Random seeding
are depicted as the error bar. In the average case of Random seeding,
the execution time differences between Grid seeding and Random
seeding are not dramatically large. In a few cases, the Random seeding
shows a better performance than Grid seeding. However, when k
increases, the gap between its best time value and its worst time value
becomes extremely larger, and Random seeding ends up with a very
bad result in the worst case, compared to Grid seeding.

The main underlying reason is that the number of iterations is
highly sensitive to which objects are selected as initial seeds in
performing Random seeding particularly when we consider a larger k
value. On the other hand, Grid seeding shows a relatively robust and
stable performance for larger k values because its initial kmini-clusters
can effectively catch the underlying k clusters to be revealed.

Fig. 8 shows the result of the quality test. At this time, the gap
between the worst and the best in Random seeding is not very large
even with larger k values. It seems that both Grid seeding and Random
seeding eventually succeed in finding the (locally) optimal clustering
for a given k value. Therefore, their results are almost the same in
terms of the clustering quality even though Grid seeding is a little bit
better than Random seeding in most cases.

Fig. 9 shows the average value of all the experiments in this section,
which effectively present that our proposed seeding technique is effective
to reduce the overall execution time with preserving the quality.

Fig. 5. Quality test with varying k (sampled). (a) UK (b) FSQNY.

Fig. 4. Scalability test with varying the sampling ratio. (a) UK (b) FSQNY.

D.-W. Choi, C.-W. Chung Information Systems 64 (2017) 1–11

9



Fig. 8. Quality test of seeding methods. (a) UK (b) FSQNY.

Fig. 7. Efficiency test of seeding methods. (a) UK (b) FSQNY.

Fig. 6. Quality test with varying α (sampled). (a) UK (b) FSQNY.
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6. Conclusions

In this paper, we dealt with the spatio-textual data as a clustering
problem, and developed a k-means family algorithm for clustering a
large-scale spatio-textual dataset. In order to address the challenges in
applying k-means to the spatio-textual data domain, we utilized the
concept of the expected distance between two random objects (or one
random object and one fixed object). By doing so, we have shown that
spatio-textual clustering can be done in a very fast manner while
preserving the reasonable clustering quality.

As a concluding remark, this paper has only considered the Jaccard
distance for textual dimension, and it still remains a future work to
estimate the expected other kinds of textual distances such as the
cosine similarity. Our next plan is to generalize our clustering scheme
to work with any kinds of textual distances.
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